Skip to main content
Log in

Improvement of l-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBNrC genes

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Brevibacterium flavum ATCC14067 was engineered for l-valine production by overexpression of different ilv genes; the ilvEBNrC genes from B. flavum NV128 provided the best candidate for l-valine production. In traditional fermentation, l-valine production reached 30.08 ± 0.92 g/L at 31°C in 72 h with a low conversion efficiency of 0.129 g/g. To further improve the l-valine production and conversion efficiency based on the optimum temperatures of l-valine biosynthesis enzymes (above 35°C) and the thermotolerance of B. flavum, the fermentation temperature was increased to 34, 37, and 40°C. As a result, higher metabolic rate and l-valine biosynthesis enzymes activity were obtained at high temperature, and the maximum l-valine production, conversion efficiency, and specific l-valine production rate reached 38.08 ± 1.32 g/L, 0.241 g/g, and 0.133 g g−1 h−1, respectively, at 37°C in 48 h fermentation. The strategy for enhancing l-valine production by overexpression of key enzymes in thermotolerant strains may provide an alternative approach to enhance branched-chain amino acids production with other strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bartek T, Zonnchen E, Klein B, Gerstmeir R, Makus P, Lang S, Oldiges M (2010) Analysing overexpression of l-valine biosynthesis genes in pyruvate-dehydrogenase-deficient Corynebacterium glutamicum. J Ind Microbiol Biotechnol 37(3):263–270. doi:10.1007/s10295-009-0669-x

    Article  PubMed  CAS  Google Scholar 

  2. Blombach B, Arndt A, Auchter M, Eikmanns BJ (2009) l-Valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol 75(4):1197–1200. doi:10.1128/AEM.02351-08

    Article  PubMed  CAS  Google Scholar 

  3. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79(3):471–479. doi:10.1007/s00253-008-1444-z

    Article  PubMed  CAS  Google Scholar 

  4. Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ (2007) l-Valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73(7):2079–2084. doi:10.1128/AEM.02826-06

    Article  PubMed  CAS  Google Scholar 

  5. Demain AL (2000) Microbial biotechnology. Trends Biotechnol 18(1):26–31. doi:S0167-7799(99)01400-6

    Article  PubMed  CAS  Google Scholar 

  6. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC, Boca Raton

    Google Scholar 

  7. Elisakova V, Patek M, Holatko J, Nesvera J, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71(1):207–213. doi:10.1128/AEM.71.1.207-213.2005

    Article  PubMed  CAS  Google Scholar 

  8. Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35

    PubMed  CAS  Google Scholar 

  9. Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicm strain for efficient l-lysine production. J Ind Microbiol Biotechnol 33(7):610–615. doi:10.1007/s10295-006-0104-5

    Article  PubMed  CAS  Google Scholar 

  10. Ishida M, Sato K, Hashiguchi K, Ito H, Enei H, Nakamori S (1993) High fermentative production of l-threonine from acetate by a Brevibacterium flavum stabilized strain transformed with a recombinant plasmid carrying the Escherichia coli thr operon. Biosci Biotechnol Biochem 57:1755–1756

    Article  PubMed  CAS  Google Scholar 

  11. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175(17):5595–5603

    PubMed  CAS  Google Scholar 

  12. Kimura E (2003) Metabolic engineering of glutamate production. Adv Biochem Eng Biotechnol 79:37–57

    PubMed  CAS  Google Scholar 

  13. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69(1):1–8. doi:10.1007/s00253-005-0155-y

    Article  PubMed  CAS  Google Scholar 

  14. Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM (2003) Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol 104(1–3):241–252. doi:10.1016/S0168-1656(03)00162-7

    Article  PubMed  CAS  Google Scholar 

  15. Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187(22):7639–7646. doi:10.1128/Jb.187.22.7639-7646.2005

    Article  PubMed  CAS  Google Scholar 

  16. Miyajima R, Shiio I (1972) Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum VI. Effects of isoleucine and valine on threonine dehydratase activity and its formation. J Biochem 71:951–960

    PubMed  CAS  Google Scholar 

  17. Ohnishi J, Hayashi M, Mitsuhashi S, Ikeda M (2003) Efficient 40°C fermentation of l-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding. Appl Microbiol Biotechnol 62(1):69–75. doi:10.1007/s00253-003-1254-2

    Article  PubMed  CAS  Google Scholar 

  18. Park J, Lee S (2010) Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol 85(3):491–506. doi:10.1007/s00253-009-2307-y

    Article  PubMed  CAS  Google Scholar 

  19. Park JH, Kim TY, Lee KH, Lee SY (2011) Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis. Biotechnol Bioeng 108(4):934–946. doi:10.1002/bit.22995

    Article  PubMed  CAS  Google Scholar 

  20. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104(19):7797–7802. doi:10.1073/pnas.0702609104

    Article  PubMed  CAS  Google Scholar 

  21. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68(5):2246–2250. doi:10.1128/AEM.68.5.2246-2250.2002

    Article  PubMed  CAS  Google Scholar 

  22. Sambrook J, Russel DV (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  23. Srivastava P, Deb JK (2005) Gene expression systems in corynebacteria. Protein Express Purif 40(2):221–229. doi:10.1016/j.pep.2004.06.017

    Article  CAS  Google Scholar 

  24. Tada K, Kishimoto M, Omasa T, Katakura Y, Suga K (2000) l-Lysine production by exponential feeding of l-threonine. J Biosci Bioeng 90:669–674

    PubMed  CAS  Google Scholar 

  25. Wittmann C (2010) Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 120:21–49. doi:10.1007/10_2009_58

    PubMed  CAS  Google Scholar 

  26. Xu D, Tan Y, Huan X, Hu X, Wang X (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Methods 80(1):86–92. doi:10.1016/j.mimet.2009.11.003

    Article  PubMed  CAS  Google Scholar 

  27. Yamada K, Kinoshita S, Tsunoda T, Aida K (1972) The microbial production of amino acids. Halsted, New York

    Google Scholar 

  28. Yang YT, Peredelchuk M, Bennett GN, San KY (2000) Effect of variation of Klebsiella pneumoniae acetolactate synthase expression on metabolic flux redistribution in Escherichia coli. Biotechnol Bioeng 69(2):150–159. doi:10.1002/(SICI)1097-0290(20000720)69:2<150::AID-BIT4>3.0.CO;2-N

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Program of Chinese 863 National High-Tech Research and Development Plan Project (No. 2008AA02Z212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohu Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, X., Ge, X., Wu, D. et al. Improvement of l-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBNrC genes. J Ind Microbiol Biotechnol 39, 63–72 (2012). https://doi.org/10.1007/s10295-011-1000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1000-1

Keywords

Navigation