Skip to main content
Log in

A distance function for computing on finite subsets of Euclidean spaces

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In practical purposes for some geometrical problems, specially the fields in common with computer science, we deal with information of some finite number of points. The problem often arises here is: “How are we able to define a plausible distance function on a finite three dimensional space?” In this paper, we define such a distance function in order to apply it to further purposes, e.g. in the field settings of transportation theory and geometry. More precisely, we present a new model for traveling salesman problem and vehicle routing problem for two dimensional manifolds in three dimensional Euclidean space, the second problem on which we focus on this line is, three dimensional triangulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archetti, C., Speranza, M.G. Vehicle routing problems with split deliveries. Intl. Trans. in Op. Res., 19: 3–22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, H., Cheong, O., Vigneron, A. The Voronoi Diagram of Curved Objects, Discrete. Comput. Geom., 34: 439–453 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aurenhammer, F., Voronoi diagrams-a survey of a fundamental geometric data structure. ACM Computing Survey, 23(3): 345–405 (1991)

    Article  Google Scholar 

  4. Cabello, S., Fort, M., Sellars. J.A. Higher-order Voronoi diagrams on triangulated surfaces. Inform. Process. Lett., 109: 440–445 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colorni, A., Dorigo, M., Maniezzo, V., et al. Distributed optimization by ant colonies. In: Proceedings of the First European Conference on Artificial Life, 142: 134–142 (1991)

    Google Scholar 

  6. Dantzig, G., Ramser, J. The truck dispatching problem. Manage. Sci., 6(1): 81–91 (1959)

    MathSciNet  MATH  Google Scholar 

  7. Do Carmo, M.P. Differential geometry of curves and surfaces. Prentice-Hall, New Jersey, 1976

    MATH  Google Scholar 

  8. Fan, C., Luo, J., Wang, We., Zhu, B. Voronoi diagram with visual restriction. Theor. Comput. Sci., 532: 31–39 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flood, M. The traveling-salesman problem. Oper. Res., 4(1): 61–75 (1956)

    Article  MathSciNet  Google Scholar 

  10. Garaix, T., Artigues, C., Feillet, D., Josselin, D. Vehicle routing problems with alternative paths: an application to on-demand transportation. Eur. J. Oper. Res., 204: 62–75 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gupta, D.K. A New Algorithm To Solve Vehicle Routing Problems (VRPs). Int. J. Comput. Math., 80(3): 267–274 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, W.X., Wu, H.J.L., Wang, G.J. Constructing PDE-based surfaces bounded by geodesics or lines of curvature. Comput. Math. Appl., 65: 673–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kazhdan, M., Bolitho, M., Hugues, H. Poisson surface reconstruction. Proceedings of the fourth Eurographics symposium on Geometry processing, June, Cagliari, Sardinia, Italy, 2006, 26–28

    Google Scholar 

  14. Lee, J. Riemannian Manifolds: An Introduction to Curvature. Series: Graduate Texts in Mathematics, Vol. 176, 1997, XVI, 226 p

    Google Scholar 

  15. Lin, C., Wu, G., Xia, F., Li, M., Yao, L., Pei, Z. Energy efficient ant colony algorithms for data aggregation in wireless sensor networks. J. Comput. Syst. Sci., 78: 1686–1702 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Y.J., Tan, K. The complexity of geodesic Voronoi diagrams on triangulated 2-manifold surfaces. Inform. Process. Lett., 113: 132–136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. McCleary, J. Geometry from a Differentiable Viewpoint. Cambridge University Press, 1994

    MATH  Google Scholar 

  18. Mitschea, D., Saumellb, M., Silveirab, R.I. On the number of higher order Delaunay triangulations. Theor. Comput. Sci., 412(29): 3589–3597 (2011)

    Article  MathSciNet  Google Scholar 

  19. O’Neill, B. Elementary differential geometry. Academic Press, New York, 1966

    MATH  Google Scholar 

  20. Pop, P.C., Kara, I. Horvat-Marc, A. New mathematical models of the generalized vehicle routing problem and extensions. Appl. Math. Model., 36: 97–107 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pillac, V., et al. A review of dynamic vehicle routing problems. Eur. J. Oper. Res., 25(1): 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, Z., Wang, Z. A novel two-phase heuristic method for vehicle routing problem with backhauls. Comput. Math. Appl., 57: 1923–1928 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, G.J., Tang, K., Tai, C.L. Parametric representation of a surface pencil with a common spatial geodesic. Comput. Aided Design, 36(5): 447–459 (2004)

    Article  MATH  Google Scholar 

  24. Yousefikhoshbakht, M., Didehvar, F., Rahmati, F. An Efficient Solution for the Vehicle Routing Problem by Using a Hybrid Elite Ant Colony Optimization. Int. J. Comput. Commun., 9(2): 156–162 (2004)

    Google Scholar 

  25. Yousefikhoshbakht, M., Didehvar, F., Rahmati, F. Solving the heterogeneous fixed fleet open vehicle routing problem by a combined metaheuristic algorithm. Int. J. Prod. Res., 52(9): 2565–2575 (2014)

    Article  Google Scholar 

  26. Zhang, X., Tang, L. A New Hybrid Ant Colony Optimization Algorithm for the Vehicle Routing Problem. Pattern. Recogn. Lett., 30(152): 848–855 (2009)

    Article  Google Scholar 

  27. Zhang, J.J., You, L.H. Fast surface modeling using a 6th order PDE. Comput. Graph. Forum., 23(3): 311–320 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Didehvar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahremani-Gol, H., Didehvar, F. & Razavi, A. A distance function for computing on finite subsets of Euclidean spaces. Acta Math. Appl. Sin. Engl. Ser. 34, 197–208 (2018). https://doi.org/10.1007/s10255-018-0735-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-018-0735-0

Keywords

2000 MR Subject Classification

Navigation