Skip to main content

Advertisement

Log in

Ocean/ice shelf interaction in the southern Weddell Sea: results of a regional numerical helium/neon simulation

  • Original Paper
  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Ocean/ice interaction at the base of deep-drafted Antarctic ice shelves modifies the physical properties of inflowing shelf waters to become Ice Shelf Water (ISW). In contrast to the conditions at the atmosphere/ocean interface, the increased hydrostatic pressure at the glacial base causes gases embedded in the ice to dissolve completely after being released by melting. Helium and neon, with an extremely low solubility, are saturated in glacial meltwater by more than 1000%. At the continental slope in front of the large Antarctic caverns, ISW mixes with ambient waters to form different precursors of Antarctic Bottom Water. A regional ocean circulation model, which uses an explicit formulation of the ocean/ice shelf interaction to describe for the first time the input of noble gases to the Southern Ocean, is presented. The results reveal a long-term variability of the basal mass loss solely controlled by the interaction between waters of the continental shelf and the ice shelf cavern. Modeled helium and neon supersaturations from the Filchner–Ronne Ice Shelf front show a “low-pass” filtering of the inflowing signal due to cavern processes. On circumpolar scales, the simulated helium and neon distributions allow us to quantify the ISW contribution to bottom water, which spreads with the coastal current connecting the major formation sites in Ross and Weddell Seas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 5
Fig. 8
Fig. 7
Fig. 9

Similar content being viewed by others

Notes

  1. Derived from bomb-produced radiocarbon invasion rates into the ocean and, hence, \(k_0\) includes implicitly the Schmidt number for \(^{14}{\rm C}\).

  2. We assumed a constant total atmospheric pressure of 992.94 hPa \(\approx\) 0.97996 atm.

  3. The uncertainty in the parameterization of the flux dependence to wind speed has probably a larger effect.

  4. GMT (General Mapping Tool) topography is mainly based on the World Vector Shore data set of the National Geophysical Data Center in Boulder, CO, USA.

References

  • Asher W, Wanninkhof R (1998) Transient tracers and air–sea gas transfer. J Geophys Res 103(C8):15939–15958

    Article  Google Scholar 

  • Assmann K, Timmermann R (2005) Variability of dense water formation in the Ross Sea. Ocean Dyn 55(2):68–87

    Article  Google Scholar 

  • Baines P, Condie S (1998) Observations and modelling of Antarctic downslope flows: a review. In: Jacobs S, Weiss R (eds) Ocean, ice and atmosphere: interaction at the antarctic continental margin. Antarctic Research Series, vol. 75. American Geophysical Union, Washington, pp 29–49

    Google Scholar 

  • Bayer R, Schlosser P (1991) Tritium profiles in the Weddell Sea. Mar Chem 35:123–136

    Article  Google Scholar 

  • Beckmann A, Hellmer H, Timmermann R (1999) A numerical model of the Weddell Sea: large scale circulation and water mass distribution. J Geophys Res 104(C10):23375–23391

    Article  Google Scholar 

  • Carmack E (1974) A quantitative characterization of water masses in the Weddell Sea during summer. Deep-Sea Res 21:431–443

    Google Scholar 

  • England MH, Garcon V, Minster J-F (1994) Chlorofluorocarbon uptake in a world ocean model 1. Sensitivity to the surface gas forcing. J Geophys Res 99(C12):25215–25233

    Article  Google Scholar 

  • Foldvik A, Gammelsrød T, Tørrensen T (1985a) Hydrographic observations from the Weddell Sea during the Norwegian Antarctic research expedition 1976/77. Polar Res 3:177–193

    Google Scholar 

  • Foldvik A, Gammelsrød T, Tørresen T (1985b) Circulation and water masses on the southern Weddell Sea shelf. In: Jacobs SS (ed) Oceanology of the Antarctic continental shelf. Antarctic Research Series, vol. 43. American Geophysical Union, Washington, pp 5–20

    Google Scholar 

  • Foster T, Carmack E (1976) Frontal zone mixing and Antarctic bottom water formation in the southern Weddell Sea. Deep-Sea Res 23:301–317

    Google Scholar 

  • Gade H (1979) Melting of ice in seawater: a primitive model with application to the Antarctic ice shelf and icebergs. J Phys Oceanogr 9:189–198

    Article  Google Scholar 

  • Gammelsrød T, Foldvik A, Nøst O, Skagseth Ø, Anderson L, Fogelqvist E, Olsson K, Tanhua T, Jones E, Østerhus S (1994) Distribution of water masses on the continental shelf in the southern Weddell Sea. In: The polar oceans and their role in shaping the global environment. Geophysical Monograph, vol. 84. American Geophysical Union, Washington, pp 159–176

    Google Scholar 

  • Gerdes R, Determann J, Grosfeld K (1999) Ocean circulation beneath Filchner–Ronne Ice Shelf from three-dimensional model results. J Geophys Res 104(C7):15827–15842

    Article  Google Scholar 

  • Grosfeld K, Schröder M, Fahrbach E, Gerdes R, Mackensen A (2001) How iceberg calving and grouding change the circulation and hydrography in the Filchner Ice Shelf–Ocean System. J Geophys Res 106(C5):9039–9055

    Article  Google Scholar 

  • Haidvogel DB, Wilkin JL, Young R (1991) A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J Comput Phys 94(1):151–185

    Article  Google Scholar 

  • Hamme R, Emerson S (2002) Mechanisms controlling the global oceanic distribution of the inert gases: argon, nitrogen and neon. Geophys Res Lett 29(23):1–4

    Article  Google Scholar 

  • Hamme R, Emerson S (2004) The solubility of neon, nitrogen and argon in distilled water and seawater. Deep-Sea Res 51(11):1517–1528

    Article  Google Scholar 

  • Hellmer H (2004) Impact of Antarctic ice shelf melting on sea ice and deep ocean properties. Geophys Res Lett 31(10):28–29

    Article  Google Scholar 

  • Hellmer H, Olbers D (1989) A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct Sci 1:325–336

    Google Scholar 

  • Hohmann R, Schlosser P, Jacobs S, Ludin A, Weppernig R (2002) Excess helium and neon in the Southeast Pacific: tracers for glacial meltwater. J Geophys Res 107(C11):3198

    Article  Google Scholar 

  • Hood E (1997) Characterization of the air–sea gas exchange processes and dissolved gas/ice interaction using noble gases. Disseration, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, Cambridge, MA, USA

  • Hood E, Howes B, Jenkins W (1998) Dissolved gas dynamics in perennially ice-covered Lake Fryxell, Antarctica. Limnol Oceanogr 43(2):265–272

    Article  Google Scholar 

  • Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res 92(C10):10767–10776

    Google Scholar 

  • Joughin I, Padman L (2003) Melting and freezing beneath Filchner–Ronne Ice shelf, Antarctica. Geophys Res Lett 30(9):1477

    Article  Google Scholar 

  • Klatt O, Roether W, Hoppema M, Bulsiewicz K, Fleischmann U, Rodehacke C, Fahrbach E, Weiss R, Bullister J (2002) Repeated CFC sections at the Greenwich Meridian in the Weddell Sea. J Geophys Res 107(C4):43

    Article  Google Scholar 

  • Lewis E, Perkin R (1985) The winter oceanography of McMurdo Sound, Antartica. In: Jacobs S (ed) Oceanology of the Antarctic Continental Shelf. Antarctic Research Series, vol. 43. American Geophysical Union, Washington, pp 145–166

    Google Scholar 

  • Mensch M, Bayer R, Bullister J, Schlosser P, Weiss R (1996) The distribution of tritium and CFCs in the Weddell Sea during the Mid 1980s. Prog Oceanogr 38:377–415

    Article  Google Scholar 

  • Nicholls K (1997) Predicted reduction in basal melt rates of an Antarctic ice shelf in a warmer climate. Nature 388:460–462

    Article  Google Scholar 

  • Nicholls K, Makinson K (1998) Ocean circulation beneath the Western Ronne Ice Shelf, as derived from in situ measurements of water currents and properties. In: Jacobs S, Weiss R (eds) Ocean, ice and atmosphere: interaction at the antarctic continental margin. Antarctic Research Series, vol. 75. American Geophysical Union, Washington, pp 301–318

    Google Scholar 

  • Nøst O, Østerhus S (1998) Impact of grounded icebergs on the hydrographic conditions near the Filchner Ice Shelf. In: Ocean, ice and atmosphere: interaction at the Antarctic continental margin. Antarctic Research Series, vol. 75. American Geophysical Union, Washington, pp 267–284

    Google Scholar 

  • Nicholls K, Østerhus S (2004) Interannual variability and ventilation time scales in the ocean cavity beneath Filchner–Ronne Ice Shelf, Antarctica. J Geophys Res 109(C04014)

  • Nicholls K, Padman L, Schrøder M, Woodgate R, Jenkins A, Østerhus S (2003) Water mass modification over the continental shelf north of Ronne Ice Shelf, Antarctica. J Geophys Res 108(C8):3260

    Article  Google Scholar 

  • Nowlin W Jr, Zenk W (1988) Westward bottom currents along the margin of the South Shetland Island Arc. Deep-Sea Res 35(2):269–301

    Article  Google Scholar 

  • Olbers D, Gouretski V, Seiß G, Schröter J (1992) Hydrographic atlas of the southern ocean. Technical report, Alfred-Wegener-Institut for Polar and Marine Science, Bremerhaven, Germany

  • Ozima M, Podosek F (1983) Noble gas geochemistry. Cambridge University Press, USA

    Google Scholar 

  • Roether W, Well R, Putzka A, Rueth C (1998) Component separation of oceanic helium. J Geophys Res 103(C12):27931–27946

    Article  Google Scholar 

  • Roether W, Well R, Putzka A, Rueth C (2001) Corretion to “component separation of oceanic helium”. J Geophys Res 106(C3):4679

    Article  Google Scholar 

  • Schlosser P (1986) Helium: a new tracer in Antarctic oceanography. Nature 321:233–235

    Article  Google Scholar 

  • Schlosser P, Bayer R, Foldvik A, Gammelsrød T, Rohardt G, Münnich K (1990) Oxygen 18 and helium as tracers of ice shelf water and water/ice interaction in the Weddell Sea. J Geophys Res 95(C3):3253–3263

    Google Scholar 

  • Schodlok M, Rodehacke C, Hellmer H, Beckmann A (2001) On the origin of the deep CFC maximum in the eastern Weddell Sea—numerical model results. Geophys Res Lett 28(14):2859–2862

    Article  Google Scholar 

  • Timmermann R, Beckmann A, Hellmer H (2002a) Simulations of ice–ocean dynamics in the Weddell Sea 1. Model configuration and validation. J Geophys Res 107(C3):101–109

    Google Scholar 

  • Timmermann R, Hellmer H, Beckmann A (2002b) Simulations of ice–ocean dynamics in the Weddell Sea 2. Interannual variability 1985–1993. J Geophys Res 107(C3):111–116

    Google Scholar 

  • Top Z, Eismont W, Clarke W (1987) Helium isotope effect and solubility of helium and neon in distilled water and seawater. Deep-Sea Res 34(7):1139–1148

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382

    Article  Google Scholar 

  • Weiss R (1971) Solubility of helium and neon in water and seawater. J Chem Eng Data 16:235–241

    Article  Google Scholar 

  • Well R (1995) Analyse der Meßgüte eines massenspektrometrischen Meßsystems zur Heliumisotopen- und Neon-Bestimmung an Meerwasserproben. Disseration, Universität Bremen

  • Well R, Roether W (2003) Neon distribution in South Atlantic and South Pacific waters. Deep-Sea Res 50(6):721-735

    Article  Google Scholar 

  • White W, Peterson R (1996) An Antarctic circumpolar wave in surface pressure, wind, temperature and sea ice extent. Nature 380:699–702

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Roether and his former group at University Bremen for providing the noble gas data and supporting the completion of the manuscript in various ways. Thanks also to three reviewers, whose invaluable criticism helped to clarify and improve the manuscript. We thank R. Timmermann and C. Lichey for providing model forcing fields. C. Rodehacke thanks B. Klein and the team of the Institute for (Tracer) Oceanography at University of Bremen for their contribution to the data processing. This project was funded by the Deutsche Forschungsgemeinschaft (DFG) Nr. Ro 318/43 and the Alfred-Wegener-Institute contribution n15744.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian B. Rodehacke.

Additional information

Responsible editor: John Wilkin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodehacke, C.B., Hellmer, H.H., Huhn, O. et al. Ocean/ice shelf interaction in the southern Weddell Sea: results of a regional numerical helium/neon simulation. Ocean Dynamics 57, 1–11 (2007). https://doi.org/10.1007/s10236-006-0073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-006-0073-2

Keywords

Navigation