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Abstract
In Lake Biwa, picocyanobacteria blooms usually occur during the summer–autumn thermal stratification period. Intrigu-
ingly, a novel bloom was detected in winter 2015–2016, in which picocyanobacterial cell density increased by one order 
of magnitude despite lower water temperature, suggesting the possibility that “cold-water-preference” species dominate in 
the picocyanobacterial community. In the present study, we investigated the phylogenetic diversity of picocyanobacteria in 
Lake Biwa by analyzing the 16S rRNA gene. We found that the picocyanobacterial community were highly diverse in Lake 
Biwa, with eight Synechococcus-related operational taxonomic units (OTUs) detected in different seasons. These OTUs fell 
into distinct phylogenetic groups, and the majority were closely related to clusters reported previously. Notably, OTU04, 
detected during the winter bloom, was highly affiliated with sequences found in a variety of lakes, such as Tibetan lakes and 
Lake Superior, where the water bodies generally have a low trophic state and temperature, and different concentrations of 
total dissolved solids. Thus, we inferred that the group containing OTU04 may be a psychrotolerant lineage that is widely 
distributed in oligotrophic water systems with low–intermediate salinity.
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Introduction

Picocyanobacteria, which are generally unicellular cyano-
bacteria smaller than 2 µm, are ubiquitous photosynthetic 
microorganisms in aquatic ecosystems (Stockner and Antia 
1986; Stockner 1988). Despite their small size, picocyano-
bacteria contribute significantly to primary production and 
form the basis of food webs in various types of lakes and 
oceans (Stockner 1991; Weisse 1993; Callieri et al. 2013). 

In freshwaters, they are mainly represented by the genera 
Synechococcus and Cyanobium, which often cannot be dis-
tinguished clearly (Callieri 2008).

Seasonal variation in picocyanobacterial abundance in 
lake ecosystems has received considerable attention during 
the last few decades. It has been widely acknowledged that 
temperature is an important driver of picocyanobacterial 
growth and abundance (Beardall and Raven 2004; Vörös 
et  al. 2009; Jodłowska and Śliwińska 2014; Śliwińska-
Wilczewska et al. 2018), and picocyanobacteria generally 
reach maximum cell densities  (105–106 cells  mL−1) during 
summer–autumn thermal stratification in temperate lakes 
(Stockner et al. 2000; Callieri et al. 2013). Previous stud-
ies in Lake Biwa, the largest freshwater lake in Japan, have 
also reported a similar pattern, i.e., that picocyanobacteria 
form significant blooms in the epilimnion during summer 
and early autumn and decline in other seasons (Nagata 1986; 
Maeda et al. 1992; Nakano et al. 1996; Wakabayashi and 
Ichise 2004).

Intriguingly, we found an increase in picocyanobacterial 
cell densities in Lake Biwa during winter 2015–2016 despite 
decreased water temperature (Cai et al. 2020). It is likely 
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that psychrotolerant or psychrophilic species dominated the 
community during that period. Psychrotolerant Synechococ-
cus have been frequently found in winter oceans (Choi et al. 
2013) and polar seas (Tang and Vincent 1999), and some can 
maintain slow but sufficient growth even at very low tem-
peratures (− 1.8 °C to 4 °C in Cottrell and Kirchman 2009; 
nearly 4 °C in Xu et al. 2015). In addition, psychrophilic 
eukaryotic picophytoplankton that achieve optimal growth 
rates at 6–8 °C have also been reported in polar oceans 
(Lovejoy et al. 2007). However, unlike those in marine sys-
tems, freshwater picocyanobacterial lineages that adapt to 
low temperature conditions remain largely unexplored.

In the present study, we investigated the phylogenetic 
diversity of the picocyanobacteria community in Lake 
Biwa by analyzing the 16S rRNA gene. We collected water 
samples in different seasons and determined the 16S rRNA 
sequences by clone-library analyses. By comparing the com-
munity structure between summer and winter, we inferred 
whether the picocyanobacteria that proliferated during the 
winter were “cold-water-preference” species.

Methods

Sampling and DNA isolation

Sample collection was conducted biweekly at a pelagic 
site (Ie-1) in the north basin of Lake Biwa from July 2015 
to June 2017 (Cai et al. 2020). Unfiltered water samples 
were collected from the epilimnion (5 m). Cell densities 
of picocyanobacteria were determined by visualizing the 
autofluorescence under green excitation (530–550 nm) with 
an epifluorescence microscope (Cai et al. 2020). For DNA 
extraction, four water samples were collected in August 2015 
(2015sum), March 2016 (2015win), July 2016 (2016sum), 
and March 2017 (2016win). For each sample, 0.5 to 1 L of 
water was filtered through a 0.2-µm-pore-size polycarbon-
ate membrane filter (Advantec K020A047A; Toyo Roshi 
Kaisha, Japan). DNA was extracted from seston on the fil-
ter using the PowerSoil DNA Isolation kit (MOBIO, USA) 
according to the manufacturer’s instructions. Extracted DNA 
was eluted in TE buffer and stored at − 20 °C until down-
stream application.

PCR amplification, cloning, and sequencing

Partial 16S rRNA gene of Synechococcus was amplified 
using the primer set CYA359F (5′-GGG GAA TYT TCC 
GCA ATG GG, Nübel et al. 1997) and 1499R (5′-CAC CTT 
CCG GTA CGG CTA C). PCRs were conducted in a 150-µL 
reaction mixture with the following final reactant concen-
trations: 1 × PCR buffer, 0.2 mM of each dNTP, 1.5 mM 
 MgSO4, 0.3 μM of each primer, ca. 600 ng of template 

DNA, and 1 U of KOD-Plus-Neo (Toyobo, Japan) polymer-
ase. The PCR conditions were as follows: initial activation 
of the KOD-Plus-Neo polymerase for 2 min at 94 °C, fol-
lowed by 35 cycles of 10 s denaturation at 98 °C, annealing 
for 30 s at 60 °C, and extension for 30 s at 68 °C, and a 
final extension at 68 °C for 7 min. The PCR products were 
purified using a NucleoSpin Tissue kit (Macherey–Nagel, 
Germany), and cloned using a TArget Clone kit (Toyobo) 
and Competent High DH5α (Toyobo) following the manu-
facturer’s instructions.

Approximately 40 positive colonies containing PCR 
products were randomly selected from each sample. The 
inserted DNA was re-amplified with the T7 and U19 prim-
ers, and the length of the PCR products was verified by aga-
rose gel electrophoresis. Only PCR products containing the 
target sequence were sequenced using a BigDye Terminator 
v3.1 Cycle Sequencing Kit (Applied Biosystems, USA) and 
a 3130 genetic analyzer (Applied Biosystems).

Phylogenetic analysis

DNA sequences (V3–V8 region) amplified with the primer 
set for cyanobacteria were checked against the GenBank 
database using BLAST (Altschul et al. 1997). Chimeras 
were identified using vsearch (v.2.6.2; Rognes et al. 2016) 
and excluded from further analyses. Only sequences related 
to Synechococcus were grouped together into an operational 
taxonomic unit (OTU) if their similarity was greater than 
99%, considering the high conservation of the 16S rRNA 
gene (Edgar 2018). Reference sequences of currently known 
picocyanobacterial clusters and the closest relative of each 
OTU were downloaded from the GenBank database. In addi-
tion, sequences of the V3–V4 region that were highly similar 
to the OTUs detected in winter were obtained to evaluate 
the geographical distribution of winter picocyanobacteria. 
The sequence data were aligned using the MUSCLE algo-
rithm, as implemented in MEGA X (Kumar et al. 2018). 
Maximum-likelihood trees were constructed using FastTree 
(Price et al. 2010) and then edited with the “ggtree” package 
(Yu et al. 2017) in R software (v.3.4.3; R Development Core 
Team 2018). The 16S rRNA gene sequences obtained in the 
present study were deposited in GenBank with accession 
numbers MT772216 to MT772235.

Results

In Lake Biwa, picocyanobacteria formed significant 
blooms (up to 4.5 × 105 cells  mL−1) in the epilimnion 
during June and October (i.e., the thermal stratifica-
tion period) in both 2015 and 2016 (Fig.  1). Notably, 
an increase in picocyanobacterial abundance was also 
observed during December 2015 and March 2016. Cell 
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densities of picocyanobacteria increased from 3.9 × 103 
to 3.4 × 104 cells  mL−1, while the water temperature 
decreased from 17 to 8  °C. Afterwards, the density 
decreased to 7.5 × 103 cells  mL−1 when the temperature 
rose to 11 °C in April 2016, thus forming a winter bloom. 
During this period, a negative Spearman’s rank correla-
tion (rs =  − 0.915, p < 0.001) was found between picocy-
anobacterial abundance and water temperature. However, 
no bloom was observed in winter 2016–2017. After the 
summer bloom in 2016, picocyanobacterial abundance 
decreased gradually to 1.5 × 102 cells  mL−1 along with 
temperature, and did not increase until the temperature 
increased in March 2017.

A total number of 20 sequences putatively derived from 
Synechococcus were detected among all samples, except for 
2016win. These sequences were clustered into eight OTUs 
(01–08) based on 99% similarity and fell into distinct phy-
logenetic groups (Fig. 2). OTU01 was detected in summer 
2015 and 2016 and was closely affiliated with Cyanobium 
JJ9-A3. OTU02 and OTU03, both of which were detected in 
summer 2015, were closely related to the Lake Biwa cluster 
(Ernst et al. 2003) and Cyanobium Suigetsu-CG4 (group IV 
in Ohki et al. 2012), respectively. OTU04 and OTU05 were 
detected in winter 2015, with the former being highly affili-
ated with the Tibetan cluster (Xing et al. 2009; Huang et al. 
2014). OTU05 was closely related to uncultured bacteria 
detected in Feicui Reservoir and Green Lake. OTU06–08 
were detected in summer 2016. OTU06 was closely related 
to Cyanobium JJM10D5. OTU07 was closely related to the 
clade containing the Lake Biwa cluster and group E (Rob-
ertson et al. 2001), which has been described as “Lake Biwa 
strains” (Crosbie et al. 2003). OTU08 was highly affiliated 
with group H (Crosbie et al. 2003).

The additional phylogenetic analysis based on the V3–V4 
region (Fig. 3) showed that OTU04 and OTU05 were related 
to LSI/LSII and PDII, respectively, all of which were previ-
ously reported in Lake Superior (Ivanikova et al. 2007).

Discussion

No previous studies conducted in Lake Biwa have inves-
tigated seasonal variation of the picocyanobacterial com-
munity at the genetic level, and their phylogenetic diversity 
remains largely unknown. In the present study, by analyzing 
the partial 16S rRNA gene, we found that picocyanobacteria 
in Lake Biwa were highly diverse and the community struc-
ture varied by season (Fig. S1). The presence of OTU01 
in both summers also indicated that the same species may 
proliferate in the same time period regardless of year. Unfor-
tunately, due to the low abundance (i.e., no Synechococcus-
related sequence was detected in winter 2016; Fig. 1), it was 
unclear whether OTU04 or OTU05 was a ubiquitous species 
in the winter season. One possible reason for the lack of a 
winter bloom in 2016 was grazing pressure by cladocer-
ans, since the individual density of Daphnia spp. during the 
winter increased from 3.3 individuals  L−1 in 2015 to 23.1 
individuals  L−1 in 2016 (Cai et al. 2020).

Most OTUs found in summer were closely related to clus-
ters that have been previously reported (Fig. 2). The rela-
tionship among OTU02 (Lake Biwa cluster), OTU03 (group 
IV in Lake Suigetsu), and group E was especially robust, 
as confirmed by the similar topology of phylogenetic trees 
in previous studies (Crosbie et al. 2003; Ohki et al. 2012). 
By contrast, the group of OTU01 or OTU06 appeared to 
be a distinct cluster that has not yet been described. The 
two groups may be lineages that adapt to meso-eutrophic 
conditions, since relative sequences were found in a variety 
of meso-eutrophic lakes (Rajaniemi-Wacklin et al. 2008; 
Komárek et al. 2011; Cai and Kong 2013; Kojima et al. 
2014). However, further studies are necessary to clarify their 
ecological features.

Two OTUs were detected during the winter bloom, and 
the negative correlation between abundance and temperature 
suggested that either or both of them may be psychrotolerant 
species. Notably, OTU04 dominated the picocyanobacterial 

Fig. 1  Seasonal dynamics of 
picocyanobacterial abundance 
(line with black dots) and water 
temperature (gray area) in the 
epilimnion (5 m) of Lake Biwa 
from July 2015 to June 2017. 
The data were  modified from 
Cai et al. (2020)
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community in winter (66.6%, Fig. S1) and was highly affili-
ated with the Tibetan cluster (III–V in Wu et al. 2010 and 
Huang et al. 2014; Fig. 2), which was ubiquitous and abun-
dant in a variety of cold, oligotrophic lakes on the Tibetan 
Plateau (Table 1). Most of these lakes had low concentra-
tions of total dissolved solids (TDS), except for Lake Nam 
Co, which was oligosaline (Huang et al. 2014). The phyloge-
netic analysis based on the V3–V4 region (Fig. 0.3) showed 
that OTU04 was also affiliated with the Lake Superior clus-
ter containing LSI and LSII, which have been reported as a 
distinct group endemic to Lake Superior, an extremely oli-
gotrophic lake with low water temperature and TDS content 
(Table 1; Ivanikova et al. 2007; Callieri et al. 2013). Moreo-
ver, environmental sequences identical to that of OTU04 

have been frequently found in other water bodies, such as 
Lake Baikal, high-altitude Pyrenean lakes, and waters in the 
Arctic region, where temperature and trophic states are gen-
erally low. Therefore, it is likely that the group of OTU04 is 
a psychrotolerant lineage distributed widely in oligotrophic 
water systems with low–intermediate salinity.

Conversely, OTU05 was not related to any known clus-
ters. Nevertheless, it has a similarity greater than 97% with 
strains such as LBP1 (97.91%); therefore, the group of 
OTU05 is probably a Synechococcus lineage. The closest 
relatives were found in the epilimnion of Feicui Reservoir in 
December (Kojima et al. 2014) and near/under the thermo-
cline of Green Lake in September (Meyer et al. 2011; Fig. 2). 
The former is a subtropical lake where the water temperature 

Fig. 2  Maximum-likelihood tree inferred from 16S rRNA gene sequences (957 bp, covering the highly variable regions V3–V8) of eight OTUs 
detected in Lake Biwa. Bootstrap values are shown at nodes. The outgroup was Synechococcus elongatus PCC6301
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Fig. 3  Maximum-likelihood tree based on the alignment of 16S rRNA gene sequences (321 bp, covering the highly variable regions V3–V4) 
among OTU04, OTU05, and highly similar environmental sequences, including several reference clusters. Bootstrap values are shown at nodes

Table 1  Comparison of environmental parameters in Lake Biwa (2015win), Tibetan lakes, and Lake Superior

a Data were collected from Cai et al. (2020) and Japanese Ministry of Environmental Public Water database
b Data were cited from Xing et al. (2009) and Huang et al. (2014)
c Data were collected from Guildford et al. (2000), Chapra et al. (2012), Dupont et al. (2012), and Dove and Chapra (2015)
T-N total nitrogen, T-P total phosphorus, Zero means below the detection limit

Lake Biwaa Tibetan  Plateaub Superiorc

Zhaling E’ling Tuosuhai Xinxinhai Nam Co Puma Yumco

Sampling date Mar 2016 Jul 2005 Jul 2005 Jul 2005 Jul 2005 Jul 2004 Oct 2008 Sep 2004
Sampling depth (m) 5 0–0.5 0–0.5 0–0.5 0–0.5 0–0.5 0 5
Temperature (°C) 8.5 9.5 9.5 12.5 13 10.8 7.6 15
pH 7.3 8.42 8.74 8.83 8.47 9.4 9.2 8
TDS (mg  L–1) 48 616.4 428.2 566.3 673.2 1958 200 56
T-N (mg  L–1) 0.28 0.352 0.384 0.252 0.723 0.025 0.396
T-P (mg  L–1) 0.011 0 0 0 0 0.025 0.006
Trophic state meso Oligo oligo oligo oligo oligo oligo oligo
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can reach as high as 20 °C in winter, while the latter is a 
saline meromictic lake with temperatures lower than 10 °C 
near the thermocline (Brunskill and Ludlam 1969). Unlike 
OTU04, the key determinant of the distribution of this line-
age remains unclear. Although both Feicui Reservoir (Chang 
and Wen 1997) and Green Lake (Wisconsin Department 
of Natural Resources) are mesotrophic, sequences of the 
V3–V4 region related to OTU05 have been detected in both 
oligotrophic (e.g., Lake Superior) and eutrophic (e.g., Lake 
Waahi) lakes (Fig. 3). Further studies are still needed to elu-
cidate the characteristics of the group of OTU05; studies on 
picocyanobacteria have been mostly conducted during warm 
seasons, when they are abundant. Shedding more light on 
the winter communities will improve understanding of the 
phylogeny and ecology of picocyanobacteria.
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