Skip to main content

Advertisement

Log in

Application of Mouse Models to Research in Hearing and Balance

  • Review Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Laboratory mice (Mus musculus) have become the major model species for inner ear research. The major uses of mice include gene discovery, characterization, and confirmation. Every application of mice is founded on assumptions about what mice represent and how the information gained may be generalized. A host of successes support the continued use of mice to understand hearing and balance. Depending on the research question, however, some mouse models and research designs will be more appropriate than others. Here, we recount some of the history and successes of the use of mice in hearing and vestibular studies and offer guidelines to those considering how to apply mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  • Agrawal Y, Platz EA, Niparko JK (2009) Risk factors for hearing loss in US adults: data from the National Health and Nutrition Examination Survey, 1999 to 2002. Otol Neurotol 30:139–145

    Article  PubMed  Google Scholar 

  • Aitkin LM, Irvine DRF, Webster W.R (1984) Central neural mechanisms of hearing. Comprehensive Physiology

  • Al-Mana D, Ceranic B, Djahanbakhch O, Luxon LM (2008) Hormones and the auditory system: a review of physiology and pathophysiology. Neurosci 153:881–900

    Article  CAS  Google Scholar 

  • Altschuler RA, Raphael Y, Prosen C, Dolan DF, Moody DB (1992) Acoustic stimulation and overstimulatoni in the cochlea: a comparison between basal and apical turns of the cochlea. In: Dancer AL, Henderson D, Salvi RJ, Hamernik RP (eds) Noise-Induced Hearing Loss. Mosby Year Book, St. Louis, pp 60–73

    Google Scholar 

  • Anniko M, Sobin A, Wersäll J (1980) Vestibular hair cell pathology in the Shaker-2 mouse. Arch Otorhinolaryngol 226:45–50

    Article  CAS  PubMed  Google Scholar 

  • Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1995) The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11:369–375

    Article  CAS  PubMed  Google Scholar 

  • Baker M (2013) Through the eyes of a mouse. Nature 502:156–158

    Article  CAS  PubMed  Google Scholar 

  • Baloh RW (2012) Episodic ataxias 1 and 2. Handb Clin Neurol 103:595–602

    Article  PubMed  Google Scholar 

  • Barkdull GC, Hondarrague Y, Meyer T, Harris JP, Keithley EM (2007) AM-111 reduces hearing loss in a guinea pig model of acute Labyrinthitis. Laryngoscope 117:2174–2182

    Article  CAS  PubMed  Google Scholar 

  • Barrenäs M-L, Lindgren F (1991) The influence of eye color on susceptibility to TTS in humans. Br J Audiol 25:303–307

    Article  PubMed  Google Scholar 

  • Bartels S, Ito S, Trune DR, Nuttall AL (2001) Noise-induced hearing loss: the effect of melanin in the stria vascularis. Hear Res 154:116–123

    Article  CAS  PubMed  Google Scholar 

  • Basta D, Tzschentke B, Ernst A (2005) Noise-induced cell death in the mouse medial geniculate body and primary auditory cortex. Neurosci Lett 381:199–204

    Article  CAS  PubMed  Google Scholar 

  • Battinelli EM, Boyd Y, Craig IW, Breakefield XO, Chen ZY (1996) Characterization and mapping of the mouse NDP (Norrie disease) locus (Ndp). Mamm Genome 7:93–97

    Article  CAS  PubMed  Google Scholar 

  • Bennett BJ, Farber CR, Orozco L, Kang HM, Ghazalpour A, Siemers N, Neubauer M, Neuhaus I, Yordanova R, Guan B, Truong A, Yang W-P, He A, Kayne P, Gargalovic P, Kirchgessner T, Pan C, Castallani LW, Kostem E, Furlotte N, Drake TA, Eskin E, Lusis AJ (2010) A high resolution association mapping panel for the dissection of complex traits in mice. Genome Res 20:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birgerson L, Gustavson K, Stahle J (1987) Familial Menière’s disease: a genetic investigation. Am J Otol 8:323–326

    CAS  PubMed  Google Scholar 

  • Birkenmeier EH, Davisson MT, Beamer WG, Ganschow RE, Vogler CA, Gwynn B, Lyford KA, Maltais LM, Wawrzyniak CJ (1989) Murine mucopolysaccharidosis type VII: characterization of a mouse with a beta-glucuronidase deficiency. J Clin Invest 83:1258–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bizley JK, Nodal FR, Bajo VM, Nelken I, King AJ (2007) Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cereb Cortex 17:2172–2189

    Article  PubMed  Google Scholar 

  • Blesa J, Przedborski, S (2016) Parkinson’s disease: animal models and dopaminergic cell vulnerability. Parkinson’s Disease: Cell Vulnerability and Disease Progression, p. 9

  • Bowl MR, Dawson SJ (2015) The mouse as a model for age-related hearing loss-a mini-review. Gerontology 61:149–157

    Article  PubMed  Google Scholar 

  • Bredberg G (1968) Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol 236(Suppl):1–135

    Google Scholar 

  • Brenowitz EA, Zakon HH (2015) Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience. TINS 38:273–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bult CJ, Eppig JT, Blake JA, Kadin JA, Richardson JE, Mouse Genome Database Group (2016) Mouse genome database 2016. Nucleic Acids Res 44(D1):D840–D847

    Article  PubMed  Google Scholar 

  • Cable J, Jackson IJ, Steel KP (1993) Light (Blt), a mutation that causes melanocyte death, affects stria vascularis function in the mouse inner ear. Pigment Cell Res 6:215–225

    Article  CAS  PubMed  Google Scholar 

  • Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20:89–108

    Article  PubMed  Google Scholar 

  • Caras ML (2013) Estrogenic modulation of auditory processing: a vertebrate comparison. Front Neuroendocrinol 34:285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson P-I, Van Laer L, Borg E, Bondeson M-L, Thys M, Fransen E, Van Camp G (2005) The influence of genetic variation in oxidative stress genes on human noise susceptibility. Hear Res 202:87–96

    Article  CAS  PubMed  Google Scholar 

  • Chang B (2016) Animal Models of Retinitis Pigmentosa (RP). Animal Models of Ophthalmic Diseases. Springer International Publishing, pp. 101–116

  • Chen CS (1978) Acoustic trauma-induced developmental change in the acoustic startle response and audiogenic seizures in mice. Exp Neurol 60:400–403

    Article  CAS  PubMed  Google Scholar 

  • Chen G-D, Fechter LD (2003) The relationship between noise-induced hearing loss and hair cell loss in rats. Hear Res 177:81–90

    Article  PubMed  Google Scholar 

  • Chen CS, Gates GR, Bock GR (1973) Effect of priming and tympanic membrane destruction on development of audiogenic seizure susceptibility in BALBc mice. Exp Neurol 39:277–284

    Article  CAS  PubMed  Google Scholar 

  • Chen CS, Gates GR, Reynoldson JA (1976) Effect of Morphine and Naloxone on Priming-Induced Audiogenic Seizures in BALB/c Mice. Br J Pharmacol 58:517–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chia R, Achilli F, Festing MF, Fisher EM (2005) The origins and uses of mouse outbred stocks. Nat Genet 37:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Ciuman RR (2009) Communication routes between intracranial spaces and inner ear: function, pathophysiologic importance and relations with inner ear diseases. Am J Otolaryngol 30:193–202

    Article  PubMed  Google Scholar 

  • Cohen GM, Park JC, Grasso JS (1990) Comparison of demyelination and neural degeneration in spiral and Scarpa’s ganglion of C57BL/6 mice. J Elect Microsc Tech 15:165–172

    Article  CAS  Google Scholar 

  • Conlee JW, Abdul-Baqi KJ, McCandless GA, Creel DJ (1986) Differential susceptibility to noise-induced permanent threshold shift between albino and pigmented guinea pigs. Hear Res 23:81–91

    Article  CAS  PubMed  Google Scholar 

  • Conlee JW, Abdul-Baqi KJ, McCandless GA, Creel DJ (1988) Effects of aging on normal hearing loss and noise-induced threshold shift in albino and pigmented guinea pigs. Acta Otolaryngol 106:64–70

    Article  CAS  PubMed  Google Scholar 

  • Conlee JW, Gill SS, McCandless PT, Creel DJ (1989) Differential susceptibility to gentamicin ototoxicity between albino and pigmented guinea pigs. Hear Res 41:43–52

    Article  CAS  PubMed  Google Scholar 

  • Crawley JN (2000) What’s Wrong with my Mouse? Wiley and Sons, New York

    Google Scholar 

  • Creel D (1980) Inappropriate use of albino animals as models in research. Pharmacol Biochem Behav 12:969–977

    Article  CAS  PubMed  Google Scholar 

  • Crow A.L, Ohmen J, Wang J, Lavinsky J, Hartiala J, Li Q, Li X, Salehide P, Eskin E, Pan C, Lusis AJ (2015) The genetic architecture of hearing impairment in mice: evidence for frequency specific genetic determinants. G3: Genes, Genomes, Genetics, g3-115

  • Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    Article  CAS  PubMed  Google Scholar 

  • Da Costa DA, Castro JC, Macedo MEG (2008) Iris pigmentation and susceptibility to noise-induced hearing loss. Int J Audiol 47:115–118

    Article  PubMed  Google Scholar 

  • Davis RR, Newlander JK, Ling X-B, Cortopassi GA, Kreig EF, Erway LC (2001) Genetic basis for susceptibility to noise-induced hearing loss in mice. Hear Res 155:82–90

    Article  CAS  PubMed  Google Scholar 

  • Davis RR, Custer DA, Krieg E, Alagramam K (2010) N-Acetyl L-Cysteine does not protect mouse ears from the effects of noise. J Occ Med Toxicol 5:11

    Article  CAS  Google Scholar 

  • de Brouwer AP, Pennings RJ, Roeters M, Van Hauwe P, Astuto LM, Hoefsloot LH, Huygen PL, van den Helm B, Deutman AF, Bork JM, Kimberling WJ (2003) Mutations in the calcium-binding motifs of CDH23 and the 35delG mutation in GJB2 cause hearing loss in one family. Hum Genet 112:156–163

    PubMed  Google Scholar 

  • del Marmol V, Beermann F (1996) Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett 381:165–168

    Article  PubMed  Google Scholar 

  • Deol MS, Lane PW (1966) A new gene affecting the morphogenesis of the vestibular part of the inner ear in the mouse. J Embryol Exp Morphol 16:543–548

    CAS  PubMed  Google Scholar 

  • Ding D-L, McFadden SL, Salvi RJ (2001) Cochlear hair cell densities and inner ear staining techniques. In: Willott JF (ed) Handbook of mouse auditory research: from behavior to molecular biology. CRC Press, New York, NY, pp 189–204

    Chapter  Google Scholar 

  • Dobson GP (2003) On being the right size: heart design, mitochondrial efficiency and lifespan potential. Clin Exp Pharmacol Physiol 30:590–597

    Article  CAS  PubMed  Google Scholar 

  • Dowdell KC, Pesnicak L, Hoffmann V, Steadman K, Remaley AT, Cohen JI, Straus SE, Rao VK (2009) Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, diminishes lymphoproliferation in the Fas-deficient MRL/lpr−/− murine model of autoimmune lymphoproliferative syndrome (ALPS). Exp Hematol 37:487–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drayton M, Noben-Trauth K (2006) Mapping quantitative trait loci for hearing loss in Black Swiss mice. Hear Res 212:128–139

    Article  PubMed  Google Scholar 

  • Dror AA, Avraham KB (2010) Hearing impairment: a panoply of genes and functions. Neuron 68:293–308

    Article  CAS  PubMed  Google Scholar 

  • Ehret G (1974) Age-dependent hearing loss in normal hearing mice. Naturwissenschaften 61:506–507

    Article  CAS  PubMed  Google Scholar 

  • Ehret G (1983) Psychoacoustics. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C Thomas, Spring field, Illinois, pp 13–56

    Google Scholar 

  • Eppsteiner RW, Smith RJ (2011) Genetic disorders of the vestibular system. Curr Opin Otolaryngol Head Neck Surg 19:397–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Erway LC, Willott JF, Archer JR, Harrison DE (1993) Genetics of age-related hearing loss in mice: I. Inbred and F1 hybrid strains. Hear Res 65:125–132

    Article  CAS  PubMed  Google Scholar 

  • Farber DB, Flannery JG, Bowes-Rickman C (1994) The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Prog Retin Eye Res 13:31–64

    Article  CAS  Google Scholar 

  • Fernandez EA, Ohlemiller KK, Gagnon PM, Clark WW (2010) Protection against noise-induced hearing loss in young CBA/J mice by low-dose kanamycin. J Assoc Res Otolaryngol 11:235–244

    Article  PubMed  PubMed Central  Google Scholar 

  • Festing MF (2010) Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicol Pathol 38:681–690

    Article  CAS  PubMed  Google Scholar 

  • Feuerstein A, Herbst A, Wallner P (2014) Another biomarker of susceptibility to noise induced hearing loss. Biomonitoring 1:1

    Article  Google Scholar 

  • Fransen E, Lemkens N, Van Laer L, Van Camp G (2003) Age-related hearing impairment (ARHI): environmental risk factors and genetic prospects. Exp Gerontol 38:353–359

    Article  PubMed  Google Scholar 

  • Fransen E, Bonneux S, Corneveaux JJ, Schrauwen I, Di Berardino F, White CH, Ohmen JD, Van de Heyning P, Ambrosetti U, Huentelman MJ, Van Camp G (2015) Genome-wide association analysis demonstrates the highly polygenic character of age-related hearing impairment. Eur J Hum Genet 23:110–115

    Article  CAS  PubMed  Google Scholar 

  • Friedman RA, Ryan AF (1992) Transgenic mice. Current applications to the study of the auditory and vestibular systems. Otolaryngol Clin North Am 25:1017–1026

    CAS  PubMed  Google Scholar 

  • Frykholm C, Larsen H, Dahl N, Klar J, Rask-Andersen H, Friberg U (2006) Familial Ménière’s disease in five generations. Otol Neurotol 27:681–686

    Article  PubMed  Google Scholar 

  • Gagnon PM, Simmons DD, Bao J, Lei D, Ortmann AJ, Ohlemiller KK (2007) Temporal and genetic influences on protection against noise-induced hearing loss by hypoxic preconditioning in mice. Hear Res 226:79–91

    Article  PubMed  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galazyuk A, Hébert S (2015) Gap-prepulse inhibition of the acoustic startle reflex (GPIAS) for tinnitus assessment: current status and future directions. Front Neurol 6:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Gates GA, Couropmitree NN, Myers RH (1999) Genetic associations in age-related hearing thresholds. Arch Otolaryngol Head Neck Surg 125:654–659

    Article  CAS  PubMed  Google Scholar 

  • Gatti DM, Svenson KL, Shabalin A, Wu LY, Valdar W, Simecek P, Goodwin N, Cheng R, Pomp D, Palmer A, Chesler EJ (2014) Quantitative trait locus mapping methods for diversity outbred mice. G3 4(9):1623–1633

    Article  PubMed  PubMed Central  Google Scholar 

  • Gazquez I, Lopez-Escamez JA (2011) Genetics of recurrent vertigo and vestibular disorders. Curr Genomics 12:443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geifman N, Rubin E (2013) The mouse age phenome knowledgebase and disease-specific inter-species age mapping. PLoS One 8:e81114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng R, Sotomayor M, Kinder KJ, Gopal SR, Gerka-Stuyt J, Chen DHC, Hardisty-Hughes RE, Ball G, Parker A, Gaudet R, Furness D (2013) Noddy, a mouse harboring a missense mutation in protocadherin-15, reveals the impact of disrupting a critical interaction site between tip-link cadherins in inner ear hair cells. J Neurosci 33:4395–4404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SD (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374:62–64

    Article  CAS  PubMed  Google Scholar 

  • Gilman JP, Medalla M, Luebke JI (2016) Area-Specific Features of Pyramidal Neurons-a Comparative Study in Mouse and Rhesus Monkey. Cereb. Cortex, p. bhw062

  • Giraudet F, Horner KC, Cazals Y (2002) Similar half-octave TTS protection of the cochlea by xylazine/ketamine or sympathectomy. Hear Res 174:239–248

    Article  CAS  PubMed  Google Scholar 

  • Girotto G, Vuckovic D, Buniello A, Lorente-Canovas B, Lewis M, Gasparini P, Steel KP (2014) Expression and replication studies to identify new candidate genes involved in normal hearing function. PLoS One 9:e85352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gizzi MS, Peddareddygari LR, Grewal RP (2015) A familial form of benign paroxysmal positional vertigo maps to chromosome 15. Int J Neurosci 125:593–596

    Article  CAS  PubMed  Google Scholar 

  • Glueckert R, Pfaller K, Kinnefors A, Rask-Andersen H, Schrott-Fischer A (2005) The human spiral ganglion: New insights into ultrastructure, survival rate, and implications for cochlear implants. Audiol Neurootol 10:258–273

    Article  PubMed  Google Scholar 

  • Guimaraes P, Zhu X, Cannon T, Kim S, Frisina RD (2004) Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice. Hear Res 192:83–89

    Article  PubMed  Google Scholar 

  • Haack B, Markl H, Ehret G (1983) Sound communication between parents and offspring. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Spring field, Illinois, pp 57–97

    Google Scholar 

  • Hamernik RP, Patterson JH, Turrentine GA, Ahroon WA (1989) The quantitative relation between sensory cell loss and hearing thresholds. Hear Res 38:199–212

    Article  CAS  PubMed  Google Scholar 

  • Hamilton LS, Sohl-Dickstein J, Huth AG, Carels VM, Deisseroth K, Bao S (2013) Optogenetic activation of an inhibitory network enhances feedforward functional connectivity in auditory cortex. Neuron 80(4):1066–1076

    Article  CAS  PubMed  Google Scholar 

  • Harper JM (2008) Wild-derived mouse stocks: an underappreciated tool for aging research. Age 30(2–3):135–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Hederstierna C, Hultcrantz M, Collins A, Rosenhall U (2010) The menopause triggers hearing decline in healthy women. Hear Res 259:31–35

    Article  CAS  PubMed  Google Scholar 

  • Heman-Ackah SE, Juhn SK, Huang TC, Wiedmann TS (2010) A combination antioxidant therapy prevents age-related hearing loss in C57BL/6 mice. Otolaryngol Head Neck Surg 143:429–434

    Article  PubMed  Google Scholar 

  • Henley CM, Rybak LP (1995) Ototoxicity in developing animals. Brain Res Rev 20:68–90

    Article  CAS  PubMed  Google Scholar 

  • Henry KR (1979) Differential changes of auditory nerve and brain stem short latency evoked potentials in the laboratory mouse. Electroencephalogr Clin Neurophysiol 46:452–459

    Article  CAS  PubMed  Google Scholar 

  • Henry KR (1982a) Influence of genotype and age on noise-induced auditory losses. Behav Genet 12:563–573

    Article  CAS  PubMed  Google Scholar 

  • Henry KR (1982b) Age-related changes in sensitivity of the postpubertal ear to acoustic trauma. Hear Res 8:285–294

    Article  CAS  PubMed  Google Scholar 

  • Henry KR (1983a) Ageing and audition. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Springfield, Illinois, pp 470–494

    Google Scholar 

  • Henry KR (1983b) Lifelong susceptibility to acoustic trauma: changing patterns of cochlear damage over the life span of the mouse. Audiology 22:372–383

    Article  CAS  PubMed  Google Scholar 

  • Henry KR (1984) Noise and the young mouse: genotype modifies the sensitive period for effects on cochlear physiology and audiogenic seizures. Behav Neurosci 98:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Henry KR (1985) Tuning of the auditory brainstem OFF responses is complementary to tuning of the auditory brainstem ON response. Hear Res 19:115–125

    Article  CAS  PubMed  Google Scholar 

  • Henry KR (1989) Detuning of cochlear action potential tuning curves at high sound pressure levels: influence of temporal, spectral and intensity variables. Audiology 28:19–36

    Article  CAS  PubMed  Google Scholar 

  • Henry KR (2003) Hyperthermia exacerbates and hypothermia protects from noise-induced threshold elevation of the cochlear nerve envelope response in the C57BL/6J mouse. Hear Res 179:88–96

    Article  PubMed  Google Scholar 

  • Henry KR (2004) Males lose hearing earlier in mouse models of late-onset age-related hearing loss; Females lose hearing earlier in mouse models of early-onset hearing loss. Hear Res 190:141–148

    Article  PubMed  Google Scholar 

  • Henry KR, Chole RA (1979) Cochlear electrical activity in the C57BL/6 laboratory mouse: volume-conducted vertex and round window response. Acta Otolaryngol 87:61–68

    Article  CAS  PubMed  Google Scholar 

  • Henry KR, Chole RA (1980) Genotypic differences in behavioral, physiological and anatomical expressions of age-related hearing loss in the laboratory mouse. Audiology 19:369–383

    Article  CAS  PubMed  Google Scholar 

  • Henry KR, Haythorn MM (1978) Effects of age and stimulus intensity of the far field auditory brain stem potentials in the laboratory mouse. Dev Psychobiol 11:161–168

    Article  CAS  PubMed  Google Scholar 

  • Henry KR, Lepkowski CM (1978) Evoked potential correlates of genetic progressive hearing loss: age-related changes from the ear to the inferior colliculus of C57BL/6 and CBA/J mice. Acta Otolaryngol 86:366–374

    CAS  PubMed  Google Scholar 

  • Henry KR, McGinn MD (1992) The mouse as a model for human audition. A review of literature. Audiology 31:181–189

    Article  CAS  PubMed  Google Scholar 

  • Henry KR, Chole RA, McGinn MD, Frush DP (1981) Increased ototoxicity in both young and old mice. Arch Otolaryngol 107:92–95

    Article  CAS  PubMed  Google Scholar 

  • Henry KR, Fast GA, Nguyen HH, Paolinelli MC, Ayars NM (1985) Extra high-frequency auditory thresholds: fine structure, reliability, temporal integration and relation to ear canal resonance. Audiology 24:92–103

    Article  CAS  PubMed  Google Scholar 

  • Hequembourg S, Liberman MC (2001) Spiral ligament pathology: a major aspect of age-related cochlear degeneration in C57BL/6 mice. J Assoc Res Otolaryngol 2:118–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111:552–564

    Article  PubMed  Google Scholar 

  • Hildesheimer M, Henkin Y, Muchnik C, Anafi R, Sahartov E, Rubinstein M (1991) Sedation effect on temporary threshold shift induced by acoustic overstimulation. Hear Res 51:161–166

    Article  CAS  PubMed  Google Scholar 

  • Hirose K, Sato E (2011) Comparative analysis of combination kanamycin-furosemide versus kanamycin alone in the mouse cochlea. Hear Res 272:108–116

    Article  CAS  PubMed  Google Scholar 

  • Hitzemann R, Bell J, Rasmussen E, McCaughran J (2001) Chapter 21. Mapping the genes for the acoustic startle response (ASR) and prepulse inhibition of the ASR in the BxD recombinant inbred series: effect of high-frequency hearing loss and cochilear pathology. In: Willott JF (ed) Handbook of mouse auditory research: from behavior to molecular biology. CRC Press, Boca Raton, pp 441–455

    Google Scholar 

  • Hofman MA (2012) Design principles of the human brain: an evolutionary perspective. Evolution of the primate brain: from neuron to behavior. Elsevier, London, pp 373–390

    Google Scholar 

  • Hosoya M, Fujioka M, Ogawa K, Okano H (2016a). Distinct Expression Patterns of Causative Genes Responsible for Hereditary Progressive Hearing Loss in Non-Human Primate Cochlea. Sci. Rep. 6

  • Hosoya M, Fujioka M, Kobayashi R, Okano H, Ogawa K (2016b) Overlapping expression of anion exchangers in the cochlea of a non-human primate suggests functional compensation. Neurosci. Res

  • Huet A, Batrel C, Tang Y, Desmadryl G, Wang J, Puel JL, Bourien J (2016) Sound coding in the auditory nerve of gerbils. Hearing Res

  • Hughes AE, Newton VE, Liu XZ, Read AP (1994) A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14.1. Nat Genet 7:509–512

    Article  CAS  PubMed  Google Scholar 

  • Hunter KP, Willott JF (1987) Aging and the auditory brainstem response in mice with severe or minimal presbycusis. Hear Res 30:207–218

    Article  CAS  PubMed  Google Scholar 

  • Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, Kaprio J, Pedersen NL, Christensen K (2006) Genetic influence on human lifespan and longevity. Hum Genet 119:312–321

    Article  PubMed  Google Scholar 

  • Iwashita M, Kanai R, Funabiki K, Matsuda K, Hirano T (2001) Dynamic properties, interactions and adaptive modifications of vestibulo-ocular reflex and optokinetic response in mice. Neurosci Res 39:299

    Article  CAS  PubMed  Google Scholar 

  • Jackson IJ, Abbott CM (eds) (2000) Mouse genetics and transgenics: a practical approach. Oxford University Press, New York

    Google Scholar 

  • Jeffery G (1997) The albino retina: an abnormality that provides insight into normal retinal development. Trends Neurosci 20:165–169

    Article  CAS  PubMed  Google Scholar 

  • Jen JC (2008) Recent advances in the genetics of recurrent vertigo and vestibulopathy. Curr Opin Neurol 21:3–7

    Article  CAS  PubMed  Google Scholar 

  • Jen JC (2011) Genetics of vestibulopathies. Adv Otorhinolaryngol 70:130–134

    PubMed  Google Scholar 

  • Jensen JB, Lysaght AC, Liberman MC, Qvortrup K, Stankovic KM (2015) Immediate and delayed cochlear neuropathy after noise exposure in pubescent mice. PLoS One 10:e0125160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946

    CAS  PubMed  Google Scholar 

  • Johnson KR, Erway LC, Cook SA, Willott JF, Zheng QY (1997) A major gene affecting age-related hearing loss in C57BL/6J mice. Hear Res 114:83–92

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Zheng QY, Erway LC (2000) A major gene affecting age-related hearing loss is common to at least 10 inbred strains of mice. Genomics 70:171–180

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Zheng QY, Letts VA (2001) Chapter 27. Genetic analysis of non-transgenic mouse mutations affecting ear morphology or function. In: Willott JF (ed) Handbook of mouse auditory research: from behavior to molecular biology. CRC Press, New York, pp 401–428

    Google Scholar 

  • Johnson KR, Longo-Guess CM, Gagnon LH (2015) A QTL on Chr 5 modifies hearing loss associated with the fascin-2 variant of DBA/2J mice. Mamm Genome 26:338–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones TA, Jones SM (1999) Short latency compound action potentials from mammalian gravity receptor organs. Hear Res 136:75–85

    Article  CAS  PubMed  Google Scholar 

  • Jones SM, Jones TA (2014) Genetics of peripheral vestibular dysfunction: lessons from mutant mouse strains. J Am Acad Audiol 25:289–301

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones SM, Erway LC, Bergstrom RA, Schimenti JC, Jones TA (1999) Vestibular responses to linear acceleration are absent in otoconia-deficient C57BL/6JEi-het mice. Hear Res 135:56–60

    Article  CAS  PubMed  Google Scholar 

  • Jones SM, Subramanian G, Avniel W, Guo Y, Burkard RF, Jones TA (2002) Stimulus and recording variables and their effects on mammalian vestibular evoked potentials. J Neurosci Methods 118:23–31

    Article  PubMed  Google Scholar 

  • Jones SM, Johnson KR, Yu H, Erway LC, Alagramam KN, Pollak N, Jones TA (2005) A quantitative survey of gravity receptor function in mutant mouse strains. J Assoc Res Otolaryngol 6:297–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones SM, Jones TA, Johnson KR, Yu H, Erway LC, Zheng QY (2006) A comparison of vestibular and auditory phenotypes in inbred mouse strains. Brain Res 1091:40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jyothi V, Li M, Kilpatrick LA, Smythe NM, LaRue AC, Zhou D, Schulte BA, Schmiedt RA, Lang H (2010) Unmyelinated auditory type I spiral ganglion neurons in congenic Ly5.1 mice. J Comp Neurol 518:3254–3271

    Article  PubMed  PubMed Central  Google Scholar 

  • Kane KL, Longo-Guess CM, Gagnon LH, Ding D, Salvi RJ, Johnson KR (2012) Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear Res 283:80–88

    Article  CAS  PubMed  Google Scholar 

  • Kaur T, Zamani D, Tong L, Rubel EW, Ohlemiller KK, Hirose K, Warchol ME (2015) Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci 35:15050–15061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikkawa Y, Seki Y, Okumura K, Ohshiba Y, Miyasaka Y, Suzuki S, Ozaki M, Matsuoka K, Noguchi Y, Yonekawa H (2012) Advantages of a mouse model for human hearing impairment. Exp Anim 61:85–98

    Article  CAS  PubMed  Google Scholar 

  • Kim JU, Lee HJ, Kang HH, Shin JW, Ku SW, Ahn JH, Kim YJ, Chung JW (2005) Protective effect of isoflurane anesthesia on noise‐induced hearing loss in mice. Laryngoscope 115:1996–1999

    Article  CAS  PubMed  Google Scholar 

  • Klockars T, Kentala E (2007) Inheritance of Meniere’s disease in the Finnish population. Arch Otolaryngol Head Neck Surg 133:73–77

    Article  PubMed  Google Scholar 

  • Kokjohn TA, Roher AE (2009) Amyloid precursor protein transgenic mouse models and Alzheimer’s disease: understanding the paradigms, limitations, and contributions. Alzheimers Dement 5:340–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraev A (2014) Parallel universes of Black Six biology. Biol Direct 9:1–10

    Article  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise: evidence of a misspent youth. J Neurosci 26:2115–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: Cochlear nerve degeneration after ‘temporary’ noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulig J, Williot JF (1984) Frequency difference limens of C57BL/6 and DBA/2mice: relationship to auditory neuronal response properties and hearing impairment. Hear Res 16:169–174

    Article  CAS  PubMed  Google Scholar 

  • Laemle LK, Strominger NL, Carpenter DO (2006) Cross-modal innervation of primary visual cortex by auditory fibers in congenitally anophthalmic mice. Neurosci Lett 396:108–112

    Article  CAS  PubMed  Google Scholar 

  • Land RB (1970) Genetic and phenotypic relationships between ovulation rate and body weight in the mouse. Genet Res 15:171–182

    Article  CAS  PubMed  Google Scholar 

  • Landegger LD, Psaltis D, Stankovic KM (2016) Human audiometric thresholds do not predict specific cellular damage in the inner ear. Hear Res 335:83–93

    Article  PubMed  Google Scholar 

  • Lang H, Schulte BA, Zhou D, Smythe NM, Spicer SS, Schmiedt RA (2006) Nuclear factor kB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 26:3541–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavinsky J, Crow AL, Pan C, Wang J, Aaron KA, Ho MK, Li Q, Salehide P, Myint A, Monges-Hernadez M, Eskin E (2015) Genome-wide association study identifies Nox3 as a critical gene for susceptibility to noise-induced hearing loss. PLoS Genet 11:e1005094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Calvez S, Avan P, Gilain L, Romand R (1998) CD1 hearing-impaired mice. I: distortion product otoacoustic emission levels, cochlear function and morphology. Hear Res 120:37–50

    Article  PubMed  Google Scholar 

  • Le Prell CG, Lobarinas E (2015) Strategies for Evaluating Antioxidant Efficacy in Clinical Trials Assessing Prevention of Noise-Induced Hearing Loss. In: Miller, J., Le Prell, C.G., (Eds.), Free Radicals in ENT Pathology. Springer International New York, pp. 163–192

  • Le Prell CG, Dell S, Hemsley B, Hall JW, Campbell KCM, Antonelli PJ, Green GE, Miller JM, Guire K (2012) Digital music exposure reliably induces temporary threshold shift in normal-hearing human subjects. Ear Hear 33:e44–e358

    Article  PubMed  PubMed Central  Google Scholar 

  • Li HS (1992) Influence of genotype and age on acute acoustic trauma and recovery in CBA/Ca and C57BL/6J mice. Acta Otolaryngol 112:956–967

    Article  CAS  PubMed  Google Scholar 

  • Li LY, Li YT, Zhou M, Tao HW, Zhang LI (2013) Intracortical multiplication of thalamocortical signals in mouse auditory cortex. Nat Neurosci 16(9):1179–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberman MC, Kiang N-YS (1978) Acoustic trauma in cats: cochlear pathology and auditory nerve activity. Acta Otolaryngol 358:1–63

    CAS  Google Scholar 

  • Lin FR, Thorpe R, Gordon-Salant S, Ferrucci L (2011) Hearing loss prevalence and risk factors among older adults in the United States. J Gerontol A Biol Sci Med Sci 66:582–590

    Article  PubMed  Google Scholar 

  • Lin FR, Maas P, Chien W, Carey JP, Ferrucci L, Thorpe R (2012) Association of skin color, race/ethnicity, and hearing loss among adults in the USA. J Assoc Res Otolaryngol 13:109–117

    Article  PubMed  Google Scholar 

  • Liu W, Edin F, Blom H, Magnusson P, Schrott-Fischer A, Glueckert R, Santi PA, Li H, Laurell, G, Rask-Andersen H (2016) Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea: the Connexin26/30 proteins are separately expressed in man. Cell Tiss. Res. 1–15

  • Lobarinas E, Hayes SH, Allman BL (2013) The gap-startle paradigm for tinnitus screening in animal models: limitations and optimization. Hear Res 295:150–160

    Article  PubMed  Google Scholar 

  • Longenecker RJ, Galazyuk AV (2011) Development of tinnitus in CBA/CaJ mice following sound exposure. J Assoc Res Otolaryngol 12:647–658

    Article  PubMed  PubMed Central  Google Scholar 

  • Löscher W (2010) Abnormal circling behavior in rat mutants and its relevance to model specific brain dysfunctions. Neurosci Biobehav Rev 34:31–49

    Article  PubMed  Google Scholar 

  • Mahendrasingam S, MacDonald JA, Furness DN (2011) Relative time course of degeneration of different cochlear structures in the CD/1 mouse model of accelerated aging. J Assoc Res Otolaryngol 12:437–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Manji SSM, Miller KA, Williams LH, Andreasen L, Siboe M, Rose E, Bahlo M, Kuiper M, Dahl H-HM (2011) Molecular pathogenesis of genetic and inherited diseases an ENU-induced mutation of Cdh23 causes congenital hearing loss, but no vestibular dysfunction, in mice. Am J Pathol 179:903–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden SL, Henselman LW, Zheng X-Y (1999) Sex differences in auditory sensitivity of chinchillas before and after exposure to impulse noise. Ear Hear 20:164–174

    Article  CAS  PubMed  Google Scholar 

  • McGinn MD, Bean-Knudsen D, Ermel RW (1992) Incidence of otitis media in CBA/J and CBA/CaJ mice. Hear Res 59:1–6

    Article  CAS  PubMed  Google Scholar 

  • Meltser I, Cederroth CR, Basinou V, Savelyev S, Lundkvist GS, Canlon B (2014) TrkB-mediated protection against circadian sensitivity to noise trauma in the murine cochlea. Curr Biol 24:658–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mianné J, Chessum L, Kumar S, Aguilar C, Codner G, Hutchison M, Parker A, Mallon AM, Wells S, Simon MM, Teboul L (2016) Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Med 8:1

    Article  Google Scholar 

  • Mikaelian DO (1979) The development and degeneration of hearing in the C57/bl6 mouse: relation of the electrophysiologic responses from the round window to cochlear anatomy and behavioral responses. Laryngoscope 89:1–15

    Article  CAS  PubMed  Google Scholar 

  • Mikaelian DO, Warfield D, Norris O (1974) Genetic progressive hearing loss in the C57b16 mouse. Acta Otolaryngol 77:327–334

    Article  CAS  PubMed  Google Scholar 

  • Miller RA, Harper JM, Dysko RC, Durkee SJ, Austad SN (2002) Longer life spans and delayed maturation in wild-derived mice. Exp Biol Med 227(7):500–508

    CAS  Google Scholar 

  • Mills JH (1973) Threshold shifts produced by exposure to noise in chinchillas with noise-induced hearing loss. J Speech Hear Res 16:700–708

    Article  CAS  PubMed  Google Scholar 

  • Mock BE, Vijayakuma S, Pierce J, Jones TA, Jones SM (2016) Differential effects of Cdh23753A on auditory and vestibular functional aging in C57BL/6J mice. Neurobiol Aging 43:13–22

  • Moore AK, Wehr M (2013) Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. J Neurosci 33(34):13713–13723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moshammer H, Kundi M, Wallner P, Herbst A, Feuerstein A, Hutter HP (2015) Early prognosis of noise-induced hearing loss. Occup Environ Med 72:85–89

    Article  PubMed  Google Scholar 

  • Müller U, Barr-Gillespie PG (2015) New treatment options for hearing loss. Nat Rev Drug Discov 14:346–365

    Article  CAS  PubMed  Google Scholar 

  • Muller M, von Hunerbein K, Hoidis S, Smolders JWT (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73

    Article  PubMed  Google Scholar 

  • Myint A, White CH, Ohmen JD, Li X, Wang J, Lavinsky J, Salehi P, Crow AL, Ohyama T, Friedman RA (2016) Large-scale phenotyping of noise-induced hearing loss in 100 strains of mice. Hear Res 332:113–120

    Article  PubMed  Google Scholar 

  • Nagtegaal AP, Spijker S, Crins TTH, Borst JGG (2012) A novel QTL underlying early-onset, low‐frequency hearing loss in BXD recombinant inbred strains. Genes Brain Behav 11:911–920

    CAS  PubMed  Google Scholar 

  • Nemoto M, Morita Y, Mishima Y, Takahashi S, Nomura T, Ushiki T, Shiroishi T, Kikkawa Y, Yonekawa H, Kominami R (2004) Ahl3, a third locus on mouse chromosome 17 affecting age-related hearing loss. Biochem Biophys Res Commun 324:1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Nickel AG, von Hardenberg A, Hohl M, Löffler JR, Kohlhaas M, Becker J, Reil JC, Kazakov A, Bonnekoh J, Stadelmaier M, Puhl SL (2015) Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22:472–484

    Article  CAS  PubMed  Google Scholar 

  • Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35:21–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noben-Trauth K, Latoche JR, Neely HR, Bennett B (2010) Phenotype and genetics of progressive sensorineural hearing loss (Snhl1) in the LXS set of recombinant inbred strains of mice. PLoS One 5:e11459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR (2008) Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9:65–89

    Article  PubMed  Google Scholar 

  • Ohlemiller KK (2002) Reduction in sharpness of frequency tuning but not endocochlear potential in aging and noise-exposed BALB/cJ mice. J Assoc Res Otolaryngol 3:444–456

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohlemiller KK (2006) Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Res 1091:89–102

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK (2009) Mechanisms and genes in human strial presbycusis from animal models. Brain Res 1277:70–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlemiller KK (2012) Chapter 1: current issues in noise exposure. In: Tremblay KL, Burkard RF (eds) Translational Perspectives in Hearing Science, Special Topics, vol 3. Plural Publishing, San Diego, pp 1–34

    Google Scholar 

  • Ohlemiller KK (2013) Gene/environment interactions in acquired hearing loss. In: Toriello HSS (ed) Hereditary hearing loss and its syndromes. Oxford Press, New York, pp 58–84

    Google Scholar 

  • Ohlemiller KK (2015) Chapter 3: a question of balance: free radicals in inner ear homeostasis. In: Miller J, Le Prell CG (eds) Free radicals in ENT medicine. Springer, New York, pp 21–55

    Chapter  Google Scholar 

  • Ohlemiller KK, Gagnon PM (2007) Genetic dependence of cochlear cells and structures injured by noise. Hear Res 224:34–50

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Siegel JH (1994) Cochlear basal and apical differences reflected in the effects of cooling on responses of single auditory nerve fibers. Hear Res 80:174–190

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Wright JS, Heidbreder AF (2000) Vulnerability to noise-induced hearing loss in ‘middle-aged’ and young adult mice: a dose-response approach in CBA, C57BL, and BALB inbred strains. Hear Res 149:239–247

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Lett JM, Gagnon PM (2006) Cellular correlates of age-related endocochlear potential reduction in a mouse model. Hear Res 220:10–26

    Article  PubMed  Google Scholar 

  • Ohlemiller KK, Rice MR, Lett JM, Gagnon PM (2009) Absence of strial melanin coincides with age associated marginal cell loss and endocochlear potential decline. Hear Res 249:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Dahl AR, Gagnon PM (2010) Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae. J Assoc Res Otolaryngol 11:605–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohlemiller KK, Rybak Rice ME, Rellinger EA, Ortmann AJ (2011a) Divergence of noise vulnerability in cochleae of young CBA/J and CBA/CaJ mice. Hear Res 272:13–20

    Article  PubMed  Google Scholar 

  • Ohlemiller KK, Rybak Rice ME, Rosen AD, Montgomery SC, Gagnon PM (2011b) Protection by low-dose Kanamycin against noise-induced hearing loss in mice: dependence on dosing regimen and genetic background. Hear Res 280:141–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlemiller KK, Rosen AR, Rellinger EA, Montgomery SC, Gagnon PM (2011c) Different cellular and genetic basis of noise-related endocochlear potential reduction in CBA/J and BALB/cJ mice. J Assoc Res Otolaryngol 12:45–58

    Article  PubMed  Google Scholar 

  • Ohlemiller KK, Kiener AL, Gagnon PM (2016) QTL Mapping of Endocochlear Potential Differences between C57BL/6J and BALB/cJ mice. J Assoc Res Otolaryngol 17:173–194

    Article  PubMed  Google Scholar 

  • Ou HC, Bohne BA, Harding GW (2000a) Noise damage in the C57BL/CBA mouse cochlea. Hear Res 145:111–122

    Article  CAS  PubMed  Google Scholar 

  • Ou HC, Harding GW, Bohne BA (2000b) An anatomically based frequency-place map for the mouse cochlea. Hear Res 145:123–129

    Article  CAS  PubMed  Google Scholar 

  • Paquette ST, Gilels F, White PM (2016) Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse. Sci Rep 6:25056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker CC, Palmer AA (2011) Dark matter: are mice the solution to missing heritability? Front Genet 2:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Pennings RJ, Topsakal V, Astuto L, de Brouwer AP, Wagenaar M, Huygen PL, Kimberling WJ, Deutman AF, Kremer H, Cremers CW (2004) Variable clinical features in patients with CDH23 mutations (USH1D-DFNB12). Otol Neurotol 25:699–706

    Article  PubMed  Google Scholar 

  • Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8:58–69

    Article  CAS  PubMed  Google Scholar 

  • Petkov PM, Ding Y, Cassell MA, Zhang W, Wagner G, Sargent EE, Asquith S, Crew V, Johnson KA, Robinson P, Scott VE (2004) An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res 14:1806–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piscopo DM, El-Danaf RN, Huberman AD, Niell CM (2013) Diverse visual features encoded in mouse lateral geniculate nucleus. J Neurosci 33:4642–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirrier AL, Van den Ackerveken P, Kim T-S, Vandenbosch R, Nguyen L, Lefebvre PP, Malgrange B (2010) Ototoxic drugs: difference in sensitivity between mice and guinea pigs. Toxicol Lett 193:41–49

    Article  CAS  PubMed  Google Scholar 

  • Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14:708–721

    Article  CAS  PubMed  Google Scholar 

  • Price K, Zhu X, Guimaraes PF, Vasilyeva ON, Frisina RD (2009) Hormone replacement therapy diminishes hearing in peri-menopausal mice. Hear Res 252:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieve BA, Yanz JL (1984) Age-dependent changes in susceptibility to otoxic hearing loss. Acta Otolaryngol 98:428–438

    Article  CAS  PubMed  Google Scholar 

  • Pujol R (1992) Sensitive developmental period and acoustic trauma: facts and hypotheses. In: Dancer AL (ed) Noise-induced hearing loss. Mosby, St. Louis, pp 196–203

    Google Scholar 

  • Qiu W, Hamernik RP, Davis B (2006) The kurtosis metric as an adjunct to energy in the prediction of trauma from continuous, nonGaussian noise exposure. J Acoust Soc Am 120:3901–3906

    Article  PubMed  Google Scholar 

  • Rauch SD (1992) Malformation and degeneration in the inner ear of mos transgenic mice. Ann Otol Rhinol Laryngol 101:430–436

    Article  CAS  PubMed  Google Scholar 

  • Rellinger EA, Gagnon PM, Ohlemiller KK (2012) Eliminating catalase paradoxically reduces age- and noise-associated threshold elevation in C57BL/6 mice. Abstr., Assn. Res. Otolaryngol. 35, 330

  • Riley PA (1997) Molecules in focus: melanin. Int J Biochem Cell Biol 11:1235–1239

    Article  Google Scholar 

  • Riva C, Donadieu E, Magnan J, Lavieille JP (2007) Age-related hearing loss in CD/1 mice is associated to ROS formation and HIF target proteins up-regulation in the cochlea. Exp Gerontol 42:327–336

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein M, Pluznik N (1976) Effect of anesthesia on susceptibility to acoustic trauma. Ann Otol Rhinol Laryngol 85:276–280

    Article  CAS  PubMed  Google Scholar 

  • Rudnicki A, Avraham KB (2012) microRNAs: the art of silencing in the ear. EMBO Mol Med 4:849–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salt AN, Plontke SK (2009) Principles of local drug delivery to the inner ear. Audiol Neurootol 14:350–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santi PA, Aldaya R, Brown A, Johnson S, Stromback T, Cureoglu S, Rask-Andersen H (2016) Scanning Electron Microscopic Examination of the Extracellular Matrix in the Decellularized Mouse and Human Cochlea. J. Assoc. Res. Otolaryngol

  • Saunders JC (1974) The physiological effects of priming for audiogenic seizures in mice. Laryngoscope 84:750–756

    Article  CAS  PubMed  Google Scholar 

  • Saunders JC, Garfinkle TJ (1983) Peripheral anatomy and physiology I. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Springfield, Illinois, pp 131–168

    Google Scholar 

  • Saunders JC, Bock GR, Chen CS, Gates GR (1972) The effects of priming for audiogenic seizures on cochlear and behavioral responses in BALB/c mice. Exp Neurol 36:426–436

    Article  CAS  PubMed  Google Scholar 

  • Schraermeyer U, Heimann K (1999) Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res 12:219–236

    Article  CAS  PubMed  Google Scholar 

  • Schreiner L (1999) Recent experimental and clinical findings retarding an interlabyrinthine connection. Laryngo-Rhino-Otologie 78:387–393

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE, Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schughart K, Libert C, Kas MJ (2013) Controlling complexity: the clinical relevance of mouse complex genetics. Eur J Hum Genet 21:1191–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuknecht HF (1964) Further observations on the pathology of presbycusis. Arch Otolaryngol 80:369–382

    Article  CAS  PubMed  Google Scholar 

  • Schuknecht HF, Gacek MR (1993) Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 102:1–16

    Article  CAS  PubMed  Google Scholar 

  • Schuknecht HF, Watanuki K, Takahashi T, Belal AA, Kimura RS, Jones DD (1974) Atrophy of the stria vascularis, a common cause for hearing loss. Laryngoscope 84:1777–1821

    Article  CAS  PubMed  Google Scholar 

  • Schultz JM, Yang Y, Caride AJ, Filoteo AG, Penheiter AR, Lagziel A, Morell RJ, Mohiddin SA, Fananapazir L, Madeo AC, Penniston JT (2005) Modification of human hearing loss by plasma-membrane calcium pump PMCA2. NEJM 352:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Schwander M, Xiong W, Tokita J, Lelli A, Elledge HM, Kazmierczak P, Sczaniecka A, Kolatkar A, Wiltshire T, Kuhn P, Holt JR, Kachar B, Tarantino L, Müller U (2009) A mouse model for nonsyndromic deafness (DFNB2) links hearing loss to defects in tip links of mechanosensory hair cells. Proc Natl Acad Sci U S A 106:5252–5257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shearer AE, Smith RJ (2012) Genetics: advances in genetic testing for deafness. Curr Opin Pediatr 24:679

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheykholeslami K, Megerian CA, Zheng QY (2009) Vestibular evoked myogenic potentials in normal mice and Phex mice with spontaneous endolymphatic hydrops. Otol Neurotol 30:535–544

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi L, Liu K, Wang H, Zhang Y, Hong Z, Wang M, Wang X, Jiang X, Yang S (2015) Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice. Acta Otolaryngol 135:1093–1102

    Article  PubMed  Google Scholar 

  • Shi L, Chang Y, Li X, Aiken SJ, Liu L, Wang J (2016) Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea. Front Neurosci 10:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiga A, Nakagawa T, Nakayama M, Endo T, Iguchi F, Kim TS, Naito Y, Ito J (2005) Aging effects on vestibulo-ocular responses in C57BL/6 mice: comparison with alteration in auditory function. Audiol Neurootol 10:97–104

    Article  PubMed  Google Scholar 

  • Shin JB, Longo-Guess CM, Gagnon LH, Saylor KW, Dumont RA, Spinelli KJ, Pagana JM, Wilmarth PA, David LL, Gillespie PG, Johnson KR (2010) The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2J mice. J Neurosci 30:9683–9694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shnerson A, Pujol R (1982) Age-related changes in the C57BL/6J mouse cochlea. I. Physiological findings. Dev Brain Res 2:65–75

    Article  Google Scholar 

  • Shnerson A, Willott JF (1980) Ontogeny of the acoustic startle response in C57BL/6J mouse pups. J Comp Physiol Psychol 94:36–40

    Article  CAS  PubMed  Google Scholar 

  • Shone G, Raphael Y, Miller JM (1991) Hereditary deafness occurring in cd/1 mice. Hear Res 57:153–156

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Muller U (2004) Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:950–955

    Article  CAS  PubMed  Google Scholar 

  • Silver LM (1995) Mouse genetics. Oxford Press, Oxford

    Google Scholar 

  • Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16:19–27

    Article  CAS  PubMed  Google Scholar 

  • Skarnes WC (2015) Is mouse embryonic stem cell technology obsolete? Genome Biol 16:1

    Article  CAS  Google Scholar 

  • Sloan-Heggen CM, Bierer AO, Shearer AE, Kolbe DL, Nishimura CJ, Frees KL, Ephraim SS, Shibata SB, Booth KT, Campbell CA, Ranum PT (2016) Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet 135:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Shen P, Li X, Shi L, Liu L, Wang J, Yu Z, Stephen K, Aiken S, Yin S, Wang J (2016) Coding deficits in hidden hearing loss induced by noise: the nature and impacts. Sci Rep 6:25200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soons JA, Ricci AJ, Steele CR, Puria S (2015) Cytoarchitecture of the mouse organ of Corti from base to apex, determined using in situ two-photon imaging. J Assoc Res Otolaryngol 16:47–66

    Article  PubMed  Google Scholar 

  • Spongr VP, Flood DG, Frisina RD, Salvi RJ (1997) Quantitative measures of hair cell loss in CBA and C57BL/6 mice throughout their life span. J Acoust Soc Am 101:3546–3553

    Article  CAS  PubMed  Google Scholar 

  • Steel KP (1991) Similarities between mice and humans with hereditary deafness. Ann N Y Acad Sci 630:69–79

    Article  Google Scholar 

  • Steel KP (1995) Inherited hearing defects in mice. Annu Rev Genet 29:675–701

    Article  CAS  PubMed  Google Scholar 

  • Steel KP (2014) What’s the use of genetics? Perspectives on auditory research. Springer, New York, pp 569–584

    Book  Google Scholar 

  • Steel KP, Barkway C (1989) Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development 107:453–463

    CAS  PubMed  Google Scholar 

  • Steel KP, Kimberling W (1996) Approaches to understanding the molecular genetics of hearing and deafness. In: Van De Water T, Popper AN, Fay RR (eds) Clinical aspects of hearing. Springer, New York, pp 10–40

    Chapter  Google Scholar 

  • Steel KP, Smith RJ (1992) Normal hearing in Splotch (Sp/+), the mouse homologue of Waardenburg syndrome type 1. Nat Genet 2:75–79

    Article  CAS  PubMed  Google Scholar 

  • Steel K, Niaussat MM, Bock GR (1983) The genetics of hearing. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Springfield, Illinois, pp 341–394

    Google Scholar 

  • Steel KP, Barkway C, Bock GR (1987) Strial dysfunction in mice with cochleo-saccular abnormalities. Hear Res 27:11–26

    Article  CAS  PubMed  Google Scholar 

  • Stevens JC, Banks GT, Festing MF, Fisher EM (2007) Quiet mutations in inbred strains of mice. Trends Mol Med 13:512–519

    Article  CAS  PubMed  Google Scholar 

  • Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, Palmer AA, McMillan L, Churchill GA (2012) High-resolution genetic mapping using the Mouse Diversity outbred population. Genetics 190:437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed FA, Mödder UI, Roforth M, Hensen I, Fraser DG, Peterson JM, Oursler MJ, Khosla S (2010) Effects of chronic estrogen treatment on modulating age‐related bone loss in female mice. J Bone Miner Res 25:2438–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569

    Article  PubMed  Google Scholar 

  • Tassabehji M, Newton VE, Leverton K, Turnbull K, Seemanova E, Kunze J, Sperling K, Strachan T, Read AP (1994) PAX3 gene structure and mutations: close analogies between Waardenburg syndrome and the Splotch mouse. Hum Mol Genet 3:1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Threadgill DW, Churchill GA (2012) Ten years of the collaborative cross. G3 2:153–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner J, Larsen D, Hughes L, Moechars D, Shore S (2012) Time course of tinnitus development following noise exposure in mice. J Neurosci Res 90:1480–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tylstedt S, Rask-Andersen H (2001) A 3-D model of membrane specializations between human auditory spiral ganglion cells. J Neurocytol 30:465–473

    Article  CAS  PubMed  Google Scholar 

  • Tylstedt S, Kinnefors A, Rask-Andersen H (1997) Neural interaction in the human spiral ganglion: a TEM study. Acta Otolaryngol 117:505–512

    Article  CAS  PubMed  Google Scholar 

  • Uhl EW, Warner NJ (2015) Mouse models as predictors of human responses: evolutionary medicine. Curr Pathobiol Rep 3:219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Alphen AM, Stahl JS, De Zeeuw CI (2001) The dynamic characteristics of the mouse horizontal vestibulo-ocular and optokinetic response. Brain Res 890:296–305

    Article  PubMed  Google Scholar 

  • Van Eyken E, Van Camp G, Van Laer L (2007) The complexity of age-related hearing impairment: contributing environmental and genetic factors. Audiol Neurootol 12:345–358

    Article  PubMed  Google Scholar 

  • Van Laer L, Carlsson PI, Ottschytsch N, Bondeson M-L, Konings A, Vandevelde A, Dieltjens N, Fransen E, Snyders D, Borg E, Raes A, Van Camp G (2006) The contribution of genes involved in potassium-recycling in the inner ear to noise-induced hearing loss. Hum Mutat 27:786–795

    Article  CAS  PubMed  Google Scholar 

  • van Stahl JS, Alphen AM, De Zeeuw CI (2000) A comparison of video and magnetic search coil recordings of mouse eye movements. J Neurosci Methods 99:101–110

    Article  CAS  PubMed  Google Scholar 

  • Vanhooren V, Libert C (2013) The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. Ageing Res Rev 12:8–21

    Article  PubMed  Google Scholar 

  • Vierstra J, Rynes E, Sandstrom R, Zhang M, Canfield T, Hansen RS, Stehling-Sun S, Sabo PJ, Byron R, Humbert R, Thurman RE (2014) Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346:1007–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayakumar S, Lever TE, Pierce J, Zhao X, Bergstrom D, Lundberg YW, Jones TA, Jones SM (2015) Vestibular dysfunction, altered macular structure, and trait localization in A/J inbred mice. Mamm Genome 26:154–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitney G, Nyby J (1983) Sound communication among adults. In: Willott JF (ed) The auditory psychobiology of the mouse. Charles C. Thomas, Springfield, Illinois, pp 98–130

    Google Scholar 

  • Willott JF (1984) Changes in frequency representation in the auditory system of mice with age-related hearing impairment. Brain Res 309:159–162

    Article  CAS  PubMed  Google Scholar 

  • Willott JF (1986) Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice. J Neurophysiol 56:391–408

    CAS  PubMed  Google Scholar 

  • Willott JF, Bross LS (1990) Morphology of the octopus cell area of the cochlear nucleus in young and aging C57BL/6J and CBA/J mice. J Comp Neurol 300:61–81

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Shnerson A (1978) Rapid development of tuning characteristics of inferior colliculus neurons of mouse pups. Brain Res 148:230–333

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Demuth RM, Lu SM, Van Bergem P (1982) Abnormal tonotopic organization in the ventral cochlear nucleus of the hearing-impaired DBA/2 mouse. Neurosci Lett 34:13–17

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Hunter KP, Coleman JR (1988) Aging and presbycusis: effects on 2-deoxy-D-glucose uptake in the mouse auditory brain stem in quiet. Exp Neurol 99:615–621

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Turner JG, Carlson S, Ding D, Bross LS, Falls WA (1998) The BALB/c mouse as an animal model for progressive sensorineural hearing loss. Hear Res 115:162–174

    Article  CAS  PubMed  Google Scholar 

  • Wolff D (1931) Melanin in the inner ear. Arch Otolaryngol 14:195–211

    Article  Google Scholar 

  • Wright CG, Lee DH (1989) Pigmented cells of the stria vascularis. Acta Otolaryngol 108:190–200

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Marcus DC (2003) Age-related changes in cochlear endolymphatic potassium and potential in CD-1 and CBA/CaJ mice. J Assoc Res Otolaryngol 4:353–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu W-J, Sha S, McLaren JD, Kawamoto K, Raphael Y, Schacht J (2001) Aminoglycoside ototoxicity in adult CBA, C57BL, and BALB mice and the Sprague-Dawley rat. Hear Res 158:165–178

    Article  CAS  PubMed  Google Scholar 

  • Xia L, Chen Z, Su K, Yin S, Wang J (2014) Comparison of cochlear cell death caused by cisplatin, alone and in combination with furosemide. Toxicol Pathol 42:376–385

    Article  CAS  PubMed  Google Scholar 

  • Yalcin B, Flint J (2012) Association studies in outbred mice in a new era of full-genome sequencing. Mamm Genome 23:719–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yerkes RM (1904) The dancing mouse: a study in animal behavior. MacMillan, New York

    Google Scholar 

  • Yoshida N, Liberman MC (2000) Sound conditioning reduces noise-induced permanent threshold shift in mice. Hear Res 148:213–219

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Kristiansen A, Liberman MC (1999) Heat stress and protection from permanent acoustic injury in mice. J Neurosci 19:10116–10124

    CAS  PubMed  Google Scholar 

  • Yuan R, Tsaih SW, Petkova SB, Evsikova D, Marin C, Xing S, Marion MA, Bogue MA, Mills KD, Peters LL, Bult CJ (2009) Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell 8:277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou B, Mittal R, Grati MH, Lu Z, Shu Y, Tao Y, Feng Y, Xie D, Kong W, Yang S, Chen ZY (2015) The application of genome editing in studying hearing loss. Hear Res 327:102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin K. Ohlemiller.

Ethics declarations

Funding Agencies

KKO: Washington University Medical School Department of Otolaryngology

SAJ: Nebraska Tobacco Settlement Biomedical Research Foundation

KRJ: NIH NIDCD RO1 DC004301, R01 DC005827

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 24 kb)

ESM 2

(DOCX 455 kb)

ESM 3

(DOCX 94 kb)

ESM 4

(DOC 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohlemiller, K.K., Jones, S.M. & Johnson, K.R. Application of Mouse Models to Research in Hearing and Balance. JARO 17, 493–523 (2016). https://doi.org/10.1007/s10162-016-0589-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0589-1

Keywords

Navigation