Skip to main content

Advertisement

Log in

Mitochondrial proteomes of porcine kidney cortex and medulla: foundation for translational proteomics

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Emerging evidence has linked mitochondrial dysfunction to the pathogenesis of many renal disorders, including acute kidney injury, sepsis and even chronic kidney disease. Proteomics is a powerful tool in elucidating the role of mitochondria in renal pathologies. Since the pig is increasingly recognized as a major mammalian model for translational research, the lack of physiological proteome data of large mammals prompted us to examine renal mitochondrial proteome in porcine kidney cortex and medulla

Methods

Kidneys were obtained from six healthy pigs. Mitochondria from cortex and medulla were isolated using differential centrifugation and proteome maps of cortical and medullar mitochondria were constructed using two-dimensional gel electrophoresis (2DE). Protein spots with significant difference between mitochondrial fraction of renal cortex and medulla were identified by mass spectrometry.

Results

Proteomic analysis identified 81 protein spots. Of these spots, 41 mitochondrial proteins were statistically different between renal cortex and medulla (p < 0.05). Protein spots containing enzymes of beta oxidation, amino acid metabolism, and gluconeogenesis were predominant in kidney cortex mitochondria. Spots containing tricarboxylic acid cycle enzymes and electron transport system proteins, proteins maintaining metabolite transport and mitochondrial translation were more abundant in medullar mitochondria.

Conclusion

This study provides the first proteomic profile of porcine kidney cortex and medullar mitochondrial proteome. Different protein expression pattern reflects divergent functional metabolic role of mitochondria in various kidney compartments. Our study could serve as a useful reference for further porcine experiments investigating renal mitochondrial physiology under various pathological states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2DE:

Two-dimensional electrophoresis

KM:

Kidney medulla

KC:

Kidney cortex

TCA:

Tricarboxylic acid cycle

ETS:

Electron transport system

ROS:

Reactive oxygen species

References

  1. Balaban RS, Mandel LJ, Soltoff SP, Storey JM. Coupling of active ion transport and aerobic respiratory rate in isolated renal tubules. Proc Natl Acad Sci U S A. 1980;77(1):447–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Guder WG, Ross BD. Enzyme distribution along the nephron. Kidney Int. 1984;26(2):101–11.

    Article  PubMed  CAS  Google Scholar 

  3. Hall AM, Unwin RJ. The not so ‘mighty chondrion’: emergence of renal diseases due to mitochondrial dysfunction. Nephron Physiol. 2007;105(1):p1–10.

    Article  PubMed  Google Scholar 

  4. Brooks C, Wei Q, Cho SG, Dong Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Investig. 2009;119(5):1275–85.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Funk JA, Schnellmann RG. Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am J Physiol Renal Physiol. 2012;302(7):F853–64.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Dare AJ, Phillips AR, Hickey AJ, Mittal A, Loveday B, Thompson N, et al. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic Biol Med. 2009;47(11):1517–25.

    Article  PubMed  CAS  Google Scholar 

  7. Parikh SM. Therapeutic targeting of the mitochondrial dysfunction in septic acute kidney injury. Current opinion in critical care. 2013;19(6):554–9.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Thongboonkerd V. Current status of renal and urinary proteomics: ready for routine clinical application? Nephrol Dial Transplant. 2010;25(1):11–6.

    Article  PubMed  Google Scholar 

  9. Arthur JM, Thongboonkerd V, Scherzer JA, Cai J, Pierce WM, Klein JB. Differential expression of proteins in renal cortex and medulla: a proteomic approach. Kidney Int. 2002;62(4):1314–21.

    Article  PubMed  CAS  Google Scholar 

  10. Xu B, Yoshida Y, Zhang Y, Yaoita E, Osawa T, Yamamoto T. Two-dimensional electrophoretic profiling of normal human kidney: differential protein expression in glomerulus, cortex and medulla. J Electrophor. 2005;49(1):5–13.

    Article  CAS  Google Scholar 

  11. Fountoulakis M, Berndt P, Langen H, Suter L. The rat liver mitochondrial proteins. Electrophoresis. 2002;23(2):311–28.

    Article  PubMed  CAS  Google Scholar 

  12. Bugger H, Chen D, Riehle C, Soto J, Theobald HA, Hu XX, et al. Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes. 2009;58(9):1986–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Freund DM, Prenni JE, Curthoys NP. Response of the mitochondrial proteome of rat renal proximal convoluted tubules to chronic metabolic acidosis. Am J Physiol Renal Physiol. 2013;304(2):F145–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Chaiyarit S, Thongboonkerd V Changes in mitochondrial proteome of renal tubular cells induced by calcium oxalate monohydrate crystal adhesion and internalization are related to mitochondrial dysfunction. J Proteome Res. 2012

  15. Goldfarb RD, Dellinger RP, Parrillo JE. Porcine models of severe sepsis: emphasis on porcine peritonitis. Shock. 2005;24(Suppl 1):75–81.

    Article  PubMed  Google Scholar 

  16. Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J clin investig. 2009;10(119):2868–78.

    Article  CAS  Google Scholar 

  17. Baumert H, Faure JP, Zhang K, Petit I, Goujon JM, Dutheil D, et al. Evidence for a mitochondrial impact of trimetazidine during cold ischemia and reperfusion. Pharmacology. 2004;71(1):25–37.

    Article  PubMed  CAS  Google Scholar 

  18. Bendixen E. Animal models for translational proteomics. Proteomics Clin Appl. 2014;8(10):637–9.

    Article  PubMed  CAS  Google Scholar 

  19. de Cavanagh EM, Piotrkowski B, Basso N, Stella I, Inserra F, Ferder L, et al. Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB j: off publ Fed Am Soc Exp Biol. 2003;17(9):1096–8.

    Google Scholar 

  20. Mares J, Richtrova P, Hricinova A, Tuma Z, Moravec J, Lysak D, et al. Proteomic profiling of blood-dialyzer interactome reveals involvement of lectin complement pathway in hemodialysis-induced inflammatory response. Proteomics Clin Appl. 2010;4(10–11):829–38.

    Article  PubMed  CAS  Google Scholar 

  21. Kiyomiya K, Matsushita N, Matsuo S, Kurebe M. Cephaloridine-induced inhibition of cytochrome c oxidase activity in the mitochondria of cultured renal epithelial cells (LLC-PK(1)) as a possible mechanism of its nephrotoxicity. Toxicol Appl Pharmacol. 2000;167(2):151–6.

    Article  PubMed  CAS  Google Scholar 

  22. Verma N, Rettenmeier AW, Schmitz-Spanke S. Recent advances in the use of Sus scrofa (pig) as a model system for proteomic studies. Proteomics. 2011;11(4):776–93.

    Article  PubMed  CAS  Google Scholar 

  23. Lebiedzinska M, Szabadkai G, Jones AW, Duszynski J, Wieckowski MR. Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. Int J Biochem Cell Biol. 2009;41(10):1805–16.

    Article  PubMed  CAS  Google Scholar 

  24. Eaton S, Bartlett K, Pourfarzam M. Mammalian mitochondrial beta-oxidation. Biochem J. 1996;320(Pt 2):345–57.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Lehir M, Dubach UC. Peroxisomal and mitochondrial beta-oxidation in the rat-kidney: distribution of fatty acyl-coenzyme a oxidase and 3-hydroxyacyl-coenzyme-a dehydrogenase-activities along the nephron. J Histochem Cytochem. 1982;30(5):441–4.

    Article  CAS  Google Scholar 

  26. Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24(2):382–91.

    Article  PubMed  CAS  Google Scholar 

  27. Yasuda M, Fujita T, Higashio T, Okahara T, Abe Y, Yamamoto K. Effects of 4-pentenoic acid and furosemide on renal functions and renal uptake of individual free fatty acids. Pflug Arch. 1980;385(2):111–6.

    Article  CAS  Google Scholar 

  28. Huss JM, Levy FH, Kelly DP. Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid X receptor gene regulatory pathway in cardiac myocytes: a mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation. J Biol Chem. 2001;276(29):27605–12.

    Article  PubMed  CAS  Google Scholar 

  29. Knight J, Jiang J, Assimos DG, Holmes RP. Hydroxyproline ingestion and urinary oxalate and glycolate excretion. Kidney Int. 2006;70(11):1929–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Lowry M, Hall DE, Brosnan JT. Hydroxyproline metabolism by the rat kidney: distribution of renal enzymes of hydroxyproline catabolism and renal conversion of hydroxyproline to glycine and serine. Metab, Clin Exp. 1985;34(10):955–61.

    Article  CAS  Google Scholar 

  31. Burgmeier N, Zawislak R, Defeudis FV, Bollack C, Helwig JJ. Glutamic acid decarboxylase in tubules and glomeruli isolated from rat kidney cortex. Eur J Biochem. 1985;151(2):361–4.

    Article  PubMed  CAS  Google Scholar 

  32. Tillakaratne NJ, Medina-Kauwe L, Gibson KM. Gamma-aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol A Physiol. 1995;112(2):247–63.

    Article  PubMed  CAS  Google Scholar 

  33. Pircher H, Straganz GD, Ehehalt D, Morrow G, Tanguay RM, Jansen-Durr P. Identification of human fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) as a novel mitochondrial acylpyruvase. J Biol Chem. 2011;286(42):36500–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107–213.

    PubMed  CAS  Google Scholar 

  35. van de Poll MC, Soeters PB, Deutz NE, Fearon KC, Dejong CH. Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am J Clin Nutr. 2004;79(2):185–97.

    PubMed  Google Scholar 

  36. Monteil C, Fillastre JP, Morin JP. Expression and subcellular distribution of phosphoenolpyruvate carboxykinase in primary cultures of rabbit kidney proximal tubule cells: comparative study with renal and hepatic PEPCK in vivo. Biochim Biophys Acta. 1995;1243(3):437–45.

    Article  PubMed  Google Scholar 

  37. Watford M, Hod Y, Chiao YB, Utter MF, Hanson RW. The unique role of the kidney in gluconeogenesis in the chicken. The significance of a cytosolic form of phosphoenolpyruvate carboxykinase. J Biol Chem. 1981;256(19):10023–7.

    PubMed  CAS  Google Scholar 

  38. Modaressi S, Brechtel K, Christ B, Jungermann K. Human mitochondrial phosphoenolpyruvate carboxykinase 2 gene. Structure, chromosomal localization and tissue-specific expression. Biochem J. 1998;333(Pt 2):359–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Schmidt U, Guder WG. Sites of enzyme activity along the nephron. Kidney Int. 1976;9(3):233–42.

    Article  PubMed  CAS  Google Scholar 

  40. Chinopoulos C. Which way does the citric acid cycle turn during hypoxia? The critical role of alpha-ketoglutarate dehydrogenase complex. J Neurosci Res. 2013;91(8):1030–43.

    Article  PubMed  CAS  Google Scholar 

  41. Dukhande VV, Sharma GC, Lai JC, Farahani R. Chronic hypoxia-induced alterations of key enzymes of glucose oxidative metabolism in developing mouse liver are mTOR dependent. Mol Cell Biochem. 2011;357(1–2):189–97.

    Article  PubMed  CAS  Google Scholar 

  42. Levillain O, Hus-Citharel A, Garvi S, Peyrol S, Reymond I, Mutin M, et al. Ornithine metabolism in male and female rat kidney: mitochondrial expression of ornithine aminotransferase and arginase II. Am J Physiol Renal Physiol. 2004;286(4):F727–38.

    Article  PubMed  CAS  Google Scholar 

  43. Hirst J. Why does mitochondrial complex I have so many subunits? Biochem J. 2011;437(2):e1–3.

    Article  PubMed  CAS  Google Scholar 

  44. Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta. 2003;1604(3):135–50.

    Article  PubMed  CAS  Google Scholar 

  45. Guzy RD, Hoyos B, Robin E, Chen H, Liu LP, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–8.

    Article  PubMed  CAS  Google Scholar 

  46. Trueblood CE, Wright RM, Poyton RO. Differential regulation of the two genes encoding Saccharomyces cerevisiae cytochrome c oxidase subunit V by heme and the HAP2 and REO1 genes. Mol Cell Biol. 1988;8(10):4537–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Rostovtseva T, Colombini M. ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem. 1996;271(45):28006–8.

    Article  PubMed  CAS  Google Scholar 

  48. Abu-Hamad S, Sivan S, Shoshan-Barmatz V. The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc Natl Acad Sci U S A. 2006;103(15):5787–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Woriax VL, Burkhart W, Spremulli LL. Cloning, sequence analysis and expression of mammalian mitochondrial protein synthesis elongation factor Tu. Biochim Biophys Acta. 1995;1264(3):347–56.

    Article  PubMed  Google Scholar 

  50. Sasarman F, Antonicka H, Shoubridge EA. The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet. 2008;17(23):3697–707.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Project No. MSM0021620819 “Replacement of and Support to Some Vital Organs”, by the Charles University Research Fund (project number P36) by the project ED2.1.00/03.0076 by the European Regional Development Fund, and the Specific Student Research Project no. 260175/2015 of the Charles University in Prague.

Conflict of interest

All the authors have declared no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenek Tuma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (XLSX 15 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuma, Z., Kuncova, J., Mares, J. et al. Mitochondrial proteomes of porcine kidney cortex and medulla: foundation for translational proteomics. Clin Exp Nephrol 20, 39–49 (2016). https://doi.org/10.1007/s10157-015-1135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-015-1135-x

Keywords

Navigation