Skip to main content
Log in

Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Renal interstitial fibrosis is the common pathway in progressive renal diseases, where oxidative stress promotes inflammation and macrophage infiltration. Febuxostat is a novel nonpurine xanthine oxidase (XO)-specific inhibitor for treating hyperuricemia. While some reports suggest a relationship between hyperuricemia and chronic kidney disease (CKD), the renoprotective mechanism of an XO inhibitor in CKD remains unknown. Recent reports have focused on XO as a source of oxidative stress.

Methods

Here, we investigate the potential of febuxostat to reduce fibrogenic and inflammatory responses in an established interstitial fibrosis model—unilateral ureteric obstruction (UUO). Male Sprague–Dawley rats were divided into three groups: sham-operated group, vehicle-treated UUO group, and febuxostat-treated UUO group.

Results

Treatment with febuxostat diminished XO activity in obstructed kidneys, and suppressed nitrotyrosine, a marker of oxidative stress. Consequently, febuxostat inhibited early proinflammatory cytokine expression, followed by a reduction of interstitial macrophage infiltration. In addition, febuxostat suppressed transforming growth factor-β messenger RNA expression, thereby ameliorating smooth muscle alpha actin and type I collagen expression.

Conclusion

Our results provide evidence for the renoprotective action of febuxostat against the formation of interstitial fibrosis. A decrease in macrophage infiltration and interstitial fibrosis, along with a decrease of the oxidative stress marker, strongly suggests the existence of a causal relationship between them. Febuxostat may have therapeutic value in slowing or preventing interstitial fibrosis in patients with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Madero M, Sarnak MJ, Wang X, Greene T, Beck GJ, Kusek JW, Collins AJ, Levey AS, Menon V. Uric acid and long-term outcomes in CKD. Am J Kidney Dis. 2009;53:796–803.

    Article  PubMed  CAS  Google Scholar 

  2. Suliman ME, Johnson RJ, Garcia-Lopez E, Qureshi AR, Molinaei H, Carrero JJ, Heimburger O, Barany P, Axelsson J, Lindholm B, Stenvinkel P. J-shaped mortality relationship for uric acid in CKD. Am J Kidney Dis. 2006;48:761–71.

    Article  PubMed  CAS  Google Scholar 

  3. Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincon A, Arroyo D, Luno J. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5:1388–93.

    Article  PubMed  CAS  Google Scholar 

  4. Sanchez-Lozada LG, Tapia E, Soto V, Avila-Casado C, Franco M, Wessale JL, Zhao L, Johnson RJ. Effect of febuxostat on the progression of renal disease in 5/6 nephrectomy rats with and without hyperuricemia. Nephron Physiol. 2008;108:69–78.

    Article  Google Scholar 

  5. Kosugi T, Nakayama T, Heinig M, Zhang L, Yuzawa Y, Sanchez-Lozada LG, Roncal C, Johnson RJ, Nakagawa T. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Renal Physiol. 2009;297:F481–8.

    Article  PubMed  CAS  Google Scholar 

  6. Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens. 2008;26:269–75.

    Article  PubMed  CAS  Google Scholar 

  7. Kawada N, Moriyama T, Ando A, Fukunaga M, Miyata T, Kurokawa K, Imai E, Hori M. Increased oxidative stress in mouse kidneys with unilateral ureteral obstruction. Kidney Int. 1999;56:1004–13.

    Article  PubMed  CAS  Google Scholar 

  8. Yu MA, Sanchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010;28:1234–42.

    PubMed  Google Scholar 

  9. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985;312:159–63.

    Article  PubMed  CAS  Google Scholar 

  10. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. 2007;293:C584–96.

    Article  PubMed  CAS  Google Scholar 

  11. Landmesser U, Spiekermann S, Preuss C, Sorrentino S, Fischer D, Manes C, Mueller M, Drexler H. Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol. 2007;27:943–8.

    Article  PubMed  CAS  Google Scholar 

  12. Young MR, Young IS, Johnston SR, Rowlands BJ. Lipid peroxidation assessment of free radical production following release of obstructive uropathy. J Urol. 1996;156:1828–32.

    Article  PubMed  CAS  Google Scholar 

  13. Takano Y, Hase-Aoki K, Horiuchi H, Zhao L, Kasahara Y, Kondo S, Becker MA. Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase/xanthine dehydrogenase. Life Sci. 2005;76:1835–47.

    Article  PubMed  CAS  Google Scholar 

  14. Horiuchi H, Ota M, Kobayashi M, Kaneko H, Kasahara Y, Nishimura S, Kondo S, Komoriya K. A comparative study on the hypouricemic activity and potency in renal xanthine calculus formation of two xanthine oxidase/xanthine dehydrogenase inhibitors: TEI-6720 and allopurinol in rats. Res Commun Mol Pathol Pharmacol. 1999;104:307–19.

    PubMed  CAS  Google Scholar 

  15. Beckman JS, Parks DA, Pearson JD, Marshall PA, Freeman BA. A sensitive fluorometric assay for measuring xanthine dehydrogenase and oxidase in tissues. Free Radic Biol Med. 1989;6:607–15.

    Article  PubMed  CAS  Google Scholar 

  16. Mohiuddin I, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Nitrotyrosine and chlorotyrosine: clinical significance and biological functions in the vascular system. J Surg Res. 2006;133:143–9.

    Article  PubMed  CAS  Google Scholar 

  17. Greene EL, Paller MS. Xanthine oxidase produces O −.2 in posthypoxic injury of renal epithelial cells. Am J Physiol. 1992;263:F251–5.

    PubMed  CAS  Google Scholar 

  18. Contrin LM, Lobo SM, Navegantes LC, Orrico SP, Queiroz MM, Cury PM, Lira EC, Carta A, Yamamoto AE, Vincent JL. Tyrosine: a possible marker of severe intestinal injury during ischemia. J Surg Res. 2009;155:268–72.

    Article  PubMed  CAS  Google Scholar 

  19. Paul-Clark MJ, McMaster SK, Sorrentino R, Sriskandan S, Bailey LK, Moreno L, Ryffel B, Quesniaux VF, Mitchell JA. Toll-like receptor 2 is essential for the sensing of oxidants during inflammation. Am J Respir Crit Care Med. 2009;179:299–306.

    Article  PubMed  CAS  Google Scholar 

  20. Moriyama T, Kawada N, Akagi Y, Ando A, Horio M, Yamauchi A, Nagata K, Imai E, Hori M. TCV-116 inhibits interstitial fibrosis and HSP47 mRNA in rat obstructive nephropathy. Kidney Int Suppl. 1997;63:S232–5.

    PubMed  CAS  Google Scholar 

  21. Bascands JL, Schanstra JP. Obstructive nephropathy: insights from genetically engineered animals. Kidney Int. 2005;68:925–37.

    Article  PubMed  CAS  Google Scholar 

  22. Ogino K, Kato M, Furuse Y, Kinugasa Y, Ishida K, Osaki S, Kinugawa T, Igawa O, Hisatome I, Shigemasa C, Anker SD, Doehner W. Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study. Circ Heart Fail. 2010;3:73–81.

    Article  PubMed  CAS  Google Scholar 

  23. Aslam S, Santha T, Leone A, Wilcox C. Effects of amlodipine and valsartan on oxidative stress and plasma methylarginines in end-stage renal disease patients on hemodialysis. Kidney Int. 2006;70:2109–15.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Isaka.

About this article

Cite this article

Omori, H., Kawada, N., Inoue, K. et al. Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy. Clin Exp Nephrol 16, 549–556 (2012). https://doi.org/10.1007/s10157-012-0609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-012-0609-3

Keywords

Navigation