Skip to main content
Log in

The relationship between renal volume and renal function in autosomal dominant polycystic kidney disease

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

In patients with autosomal dominant polycystic kidney disease (ADPKD), renal cysts grow exponentially. Since remaining renal parenchyma has a capacity to compensate for the loss of glomerular filtration, the glomerular filtration rate (GFR) may be sustained until the disease progresses. The purpose of this study was to determine if renal volumetric indices and clinical parameters are associated with renal function in Japanese patients with ADPKD.

Methods

In 73 ADPKD patients (28 men, 45 women), the associations of mean systolic blood pressure, mean diastolic blood pressure, estimated GFR (eGFR), the amount of proteinuria and albuminuria, body mass index (BMI), brachial-ankle pulse wave velocity (baPWV), ankle-brachial index, and total kidney volume (TKV) were retrospectively analyzed.

Results

Multivariate linear regression analysis showed that eGFR was significantly and independently inversely correlated with patients’ age and BMI. The median change in eGFR per year (ΔeGFR/y) was −2.8 ml/min/1.73 m2/year. Multiple linear regression analysis showed that ΔeGFR/y was significantly and independently inversely correlated with the change in TKV per year (ΔTKV/y). Multiple linear regression analysis showed that ΔTKV/y was significantly related to initial TKV and the change in albuminuria per year.

Conclusions

This study demonstrated a significant relationship between the change in renal function and the change in renal volume in Japanese ADPKD patients without renal insufficiency. It is possible that the volume measurements can be used as useful markers for disease progression in Japanese ADPKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grantham JJ, Torres VE, Chapman AB, Guay-Woodford LM, Bae KT, King BF Jr, et al. Volume progression in polycystic kidney disease. N Engl J Med. 2006;354:2122–30.

    Article  CAS  PubMed  Google Scholar 

  2. Chapman AB, Guay-Woodford LM, Grantham JJ, Torres VE, Bae KT, Baumgarten DA, et al. Renal structure in early autosomal-dominant polycystic kidney disease (ADPKD): the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort. Kidney Int. 2003;64:1035–45.

    Article  PubMed  Google Scholar 

  3. Higashihara E, Nutahara K, Kojima M, Tamakoshi A, Yoshiyuki O, Sakai H, et al. Prevalence and renal prognosis of diagnosed autosomal dominant polycystic kidney disease in Japan. Nephron. 1998;80:421–7.

    Article  CAS  PubMed  Google Scholar 

  4. Fick-Brosnahan GM, Tran ZV, Johnson AM, Strain JD, Gabow PA. Progression of autosomal-dominant polycystic kidney disease in children. Kidney Int. 2001;59:1654–62.

    Article  CAS  PubMed  Google Scholar 

  5. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369:1287–301.

    Article  PubMed  Google Scholar 

  6. Lee YR, Lee KB. Reliability of magnetic resonance imaging for measuring the volumetric indices in autosomal-dominant polycystic kidney disease: correlation with hypertension and renal function. Nephron Clin Pract. 2006;103:c173–80.

    Article  PubMed  Google Scholar 

  7. Cadnapaphornchai MA, McFann K, Strain JD, Masoumi A, Schrier RW. Prospective change in renal volume and function in children with ADPKD. Clin J Am Soc Nephrol. 2009;4:820–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kistler AD, Poster D, Krauer F, Weishaupt D, Raina S, Senn O, et al. Increases in kidney volume in autosomal dominant polycystic kidney disease can be detected within 6 months. Kidney Int. 2009;75:235–41.

    Article  PubMed  Google Scholar 

  9. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  Google Scholar 

  10. Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol. 2006;1:148–57.

    Article  PubMed  Google Scholar 

  11. Perrone R. Imaging progression in polycystic kidney disease. N Engl J Med. 2006;354:2181–3.

    Article  CAS  PubMed  Google Scholar 

  12. King BF, Reed JE, Bergstralh EJ, Sheedy PF 2nd, Torres VE. Quantification and longitudinal trends of kidney, renal cyst, and renal parenchyma volumes in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2000;11:1505–11.

    PubMed  CAS  Google Scholar 

  13. Fick-Brosnahan GM, Belz MM, McFann KK, Johnson AM, Schrier RW. Relationship between renal volume growth and renal function in autosomal dominant polycystic kidney disease: a longitudinal study. Am J Kidney Dis. 2002;39:1127–34.

    Article  PubMed  Google Scholar 

  14. Sise C, Kusaka M, Wetzel LH, Winklhofer F, Cowley BD, Cook LT, et al. Volumetric determination of progression in autosomal dominant polycystic kidney disease by computed tomography. Kidney Int. 2000;58:2492–501.

    Article  CAS  PubMed  Google Scholar 

  15. Bae KT, Grantham JJ. Imaging for the prognosis of autosomal dominant polycystic kidney disease. Nat Rev Nephrol. 2010;6:96–106.

    Article  CAS  PubMed  Google Scholar 

  16. Grantham JJ. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008;359:1477–85.

    Article  CAS  PubMed  Google Scholar 

  17. Gabow PA, Johnson AM, Kaehny WD, Kimberling WJ, Lezotte DC, Duley IT, et al. Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int. 1992;41:1311–9.

    Article  CAS  PubMed  Google Scholar 

  18. Bae KT, Commean PK, Lee J. Volumetric measurement of renal cysts and parenchyma using MRI: phantoms and patients with polycystic kidney disease. J Comput Assist Tomogr. 2000;24:614–9.

    Article  CAS  PubMed  Google Scholar 

  19. Qian Q, Du H, King BF, Kumar S, Dean PG, Cosio FG, et al. Sirolimus reduces polycystic liver volume in ADPKD patients. J Am Soc Nephrol. 2008;19:631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Edelstein CL. Mammalian target of rapamycin and caspase inhibitors in polycystic kidney disease. Clin J Am Soc Nephrol. 2008;3:1219–26.

    Article  CAS  PubMed  Google Scholar 

  21. Torres VE. Role of vasopressin antagonists. Clin J Am Soc Nephrol. 2008;3:1212–8.

    Article  CAS  PubMed  Google Scholar 

  22. Hogan MC, Masyuk TV, Page LJ, Kubly VJ, Bergstralh EJ, Li X, et al. Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J Am Soc Nephrol. 2010;21:1052–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chapman AB, Johnson AM, Gabow PA, Schrier RW. Overt proteinuria and microalbuminuria in autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 1994;5:1349–54.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant for the Progressive Renal Diseases Research Project from the Ministry of Health, Labour and Welfare of Japan.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Horie.

About this article

Cite this article

Tokiwa, S., Muto, S., China, T. et al. The relationship between renal volume and renal function in autosomal dominant polycystic kidney disease. Clin Exp Nephrol 15, 539–545 (2011). https://doi.org/10.1007/s10157-011-0428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0428-y

Keywords

Navigation