Skip to main content

Advertisement

Log in

Urinary beta-2 microglobulin and alpha-1 microglobulin are useful screening markers for tenofovir-induced kidney tubulopathy in patients with HIV-1 infection: a diagnostic accuracy study

  • Original Article
  • Published:
Journal of Infection and Chemotherapy

Abstract

Kidney tubulopathy is a well-known adverse event of antiretroviral agent tenofovir. A cross-sectional study was conducted to compare the diagnostic accuracy of five tubular markers, with a collection of abnormalities in these markers as the reference standard. The study subjects were patients with HIV-1 infection on ritonavir-boosted darunavir plus tenofovir/emtricitabine with suppressed viral load. Kidney tubular dysfunction (KTD) was predefined as the presence of at least three abnormalities in the following five parameters: β2-microglobulinuria (β2M), α1-microglobulinuria (α1M), high urinary N-acetyl-β-d-glucosaminidase (NAG), fractional excretion of phosphate (FEIP), and fractional excretion of uric acid (FEUA). Receiver operating characteristic curves and areas under the curves (AUC) were estimated, and the differences between the largest AUC and each of the other AUCs were tested using a nonparametric method. The cutoff value of each tubular marker was determined using raw data of 100 % sensitivity with maximal specificity. KTD was diagnosed in 19 of the 190 (10 %) patients. The AUCs (95 % CIs) of each tubular marker were β2M, 0.970 (0.947–0.992); α1M, 0.968 (0.944–0.992); NAG, 0.901 (0.828–0.974); FEIP, 0.757 (0.607–0.907), and FEUA, 0.762 (0.653–0.872). The AUCs of β2M and α1M were not significantly different, whereas those of the other three markers were smaller. The optimal cutoff values with 100 % sensitivity were 1,123 μg/gCr (β2M, specificity 89 %), 15.4 mg/gCr (α1M, specificity 87 %), 3.58 U/gCr (NAG, specificity 46 %), 1.02 % (FEIP, specificity 0 %), and 3.92 % (FEUA, specificity 12 %). Urinary β2M and α1M are potentially suitable screening tools for tenofovir-induced KTD. Monitoring either urinary β2M or α1M should be useful in early detection of tenofovir nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sax PE, Tierney C, Collier AC, Daar ES, Mollan K, Budhathoki C, et al. Abacavir/lamivudine versus tenofovir DF/emtricitabine as part of combination regimens for initial treatment of HIV: final results. J Infect Dis. 2011;204:1191–201.

    Article  PubMed  CAS  Google Scholar 

  2. Post FA, Moyle GJ, Stellbrink HJ, Domingo P, Podzamczer D, Fisher M, et al. Randomized comparison of renal effects, efficacy, and safety with once-daily abacavir/lamivudine versus tenofovir/emtricitabine, administered with efavirenz, in antiretroviral-naive, HIV-1-infected adults: 48-week results from the ASSERT study. J Acquir Immune Defic Syndr. 2010;55:49–57.

    Article  PubMed  CAS  Google Scholar 

  3. Arribas JR, Pozniak AL, Gallant JE, Dejesus E, Gazzard B, Campo RE, et al. Tenofovir disoproxil fumarate, emtricitabine, and efavirenz compared with zidovudine/lamivudine and efavirenz in treatment-naive patients: 144-week analysis. J Acquir Immune Defic Syndr. 2008;47:74–8.

    Article  PubMed  CAS  Google Scholar 

  4. Woo G, Tomlinson G, Nishikawa Y, Kowgier M, Sherman M, Wong DK, et al. Tenofovir and entecavir are the most effective antiviral agents for chronic hepatitis B: a systematic review and Bayesian meta-analyses. Gastroenterology. 2010;139:1218–29.

    Article  PubMed  CAS  Google Scholar 

  5. Verhelst D, Monge M, Meynard JL, Fouqueray B, Mougenot B, Girard PM, et al. Fanconi syndrome and renal failure induced by tenofovir: a first case report. Am J Kidney Dis. 2002;40:1331–3.

    Article  PubMed  Google Scholar 

  6. Schaaf B, Aries SP, Kramme E, Steinhoff J, Dalhoff K. Acute renal failure associated with tenofovir treatment in a patient with acquired immunodeficiency syndrome. Clin Infect Dis. 2003;37:e41–3.

    Article  PubMed  CAS  Google Scholar 

  7. Peyriere H, Reynes J, Rouanet I, Daniel N, de Boever CM, Mauboussin JM, et al. Renal tubular dysfunction associated with tenofovir therapy: report of 7 cases. J Acquir Immune Defic Syndr. 2004;35:269–73.

    Article  PubMed  Google Scholar 

  8. Nishijima T, Gatanaga H, Komatsu H, Tsukada K, Shimbo T, Aoki T, et al. Renal function declines more in tenofovir- than abacavir-based antiretroviral therapy in low-body weight treatment-naive patients with HIV infection. PLoS ONE. 2012;7:e29977.

    Article  PubMed  CAS  Google Scholar 

  9. Cooper RD, Wiebe N, Smith N, Keiser P, Naicker S, Tonelli M. Systematic review and meta-analysis: renal safety of tenofovir disoproxil fumarate in HIV-infected patients. Clin Infect Dis. 2010;51:496–505.

    Article  PubMed  CAS  Google Scholar 

  10. Fux CA, Rauch A, Simcock M, Bucher HC, Hirschel B, Opravil M, et al. Tenofovir use is associated with an increase in serum alkaline phosphatase in the Swiss HIV cohort study. Antivir Ther. 2008;13:1077–82.

    PubMed  CAS  Google Scholar 

  11. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: AIDS Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis. 2011;203:1791–801.

    Article  PubMed  CAS  Google Scholar 

  12. Gallant JE, Winston JA, DeJesus E, Pozniak AL, Chen SS, Cheng AK, et al. The 3-year renal safety of a tenofovir disoproxil fumarate vs. a thymidine analogue-containing regimen in antiretroviral-naive patients. AIDS. 2008;22:2155–63.

    Article  PubMed  CAS  Google Scholar 

  13. Izzedine H, Hulot JS, Vittecoq D, Gallant JE, Staszewski S, Launay-Vacher V, et al. Long-term renal safety of tenofovir disoproxil fumarate in antiretroviral-naive HIV-1-infected patients. Data from a double-blind randomized active-controlled multicentre study. Nephrol Dial Transplant. 2005;20:743–6.

    Article  PubMed  CAS  Google Scholar 

  14. Gatanaga H, Tachikawa N, Kikuchi Y, Teruya K, Genka I, Honda M, et al. Urinary beta2-microglobulin as a possible sensitive marker for renal injury caused by tenofovir disoproxil fumarate. AIDS Res Hum Retroviruses. 2006;22:744–8.

    Article  PubMed  CAS  Google Scholar 

  15. Papaleo A, Warszawski J, Salomon R, Jullien V, Veber F, Dechaux M, et al. Increased beta-2 microglobulinuria in human immunodeficiency virus-1-infected children and adolescents treated with tenofovir. Pediatr Infect Dis J. 2007;26:949–51.

    Article  PubMed  Google Scholar 

  16. Han WK, Wagener G, Zhu Y, Wang S, Lee HT. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4:873–82.

    Article  PubMed  CAS  Google Scholar 

  17. Izzedine H, Hulot JS, Villard E, Goyenvalle C, Dominguez S, Ghosn J, et al. Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis. 2006;194:1481–91.

    Article  PubMed  CAS  Google Scholar 

  18. Rodriguez-Novoa S, Labarga P, Soriano V, Egan D, Albalater M, Morello J, et al. Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin Infect Dis. 2009;48:e108–16.

    Article  PubMed  CAS  Google Scholar 

  19. Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008;73:863–9.

    Article  PubMed  CAS  Google Scholar 

  20. Ando M, Yanagisawa N, Ajisawa A, Tsuchiya K, Nitta K. Kidney tubular damage in the absence of glomerular defects in HIV-infected patients on highly active antiretroviral therapy. Nephrol Dial Transplant. 2011;26:3224–9.

    Article  PubMed  CAS  Google Scholar 

  21. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD Initiative. Ann Intern Med. 2003;138:40–4.

    Article  PubMed  Google Scholar 

  22. Nishijima T, Komatsu H, Higasa K, Takano M, Tsuchiya K, Hayashida T, et al. Single nucleotide polymorphisms in ABCC2 associate with tenofovir-induced kidney tubular dysfunction in Japanese patients with HIV-1 infection: a pharmacogenetic study. Clin Infect Dis. 2012;55(11):1558–67.

    Article  PubMed  CAS  Google Scholar 

  23. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.

    Article  PubMed  CAS  Google Scholar 

  24. Carrieri M, Trevisan A, Bartolucci GB. Adjustment to concentration-dilution of spot urine samples: correlation between specific gravity and creatinine. Int Arch Occup Environ Health. 2001;74:63–7.

    Article  PubMed  CAS  Google Scholar 

  25. Salem MA, el-Habashy SA, Saeid OM, el-Tawil MM, Tawfik PH. Urinary excretion of N-acetyl-beta-D-glucosaminidase and retinol binding protein as alternative indicators of nephropathy in patients with type 1 diabetes mellitus. Pediatr Diabetes. 2002;3:37–41.

    Article  PubMed  Google Scholar 

  26. Ezinga M, Wetzels J, van der Ven A, Burger D. Kidney tubular dysfunction is related to tenofovir plasma concentration (abstract 603). In: Program and abstracts of the 19th Conference on Retroviruses and Opportunistic Infections, 5–8 March, 2012, Seattle, WA

  27. Gupta SK, Eustace JA, Winston JA, Boydstun II, Ahuja TS, Rodriguez RA, et al. Guidelines for the management of chronic kidney disease in HIV-infected patients: recommendations of the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis. 2005;40:1559–85.

    Article  PubMed  Google Scholar 

  28. Goicoechea M, Liu S, Best B, Sun S, Jain S, Kemper C, et al. Greater tenofovir-associated renal function decline with protease inhibitor-based versus nonnucleoside reverse-transcriptase inhibitor-based therapy. J Infect Dis. 2008;197:102–8.

    Article  PubMed  CAS  Google Scholar 

  29. Nelson MR, Katlama C, Montaner JS, Cooper DA, Gazzard B, Clotet B, et al. The safety of tenofovir disoproxil fumarate for the treatment of HIV infection in adults: the first 4 years. AIDS. 2007;21:1273–81.

    Article  PubMed  CAS  Google Scholar 

  30. Fernandez-Fernandez B, Montoya-Ferrer A, Sanz AB, Sanchez-Nino MD, Izquierdo MC, Poveda J, et al. Tenofovir nephrotoxicity: 2011 update. AIDS Res Treat. 2011;2011:354908.

    PubMed  Google Scholar 

  31. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  PubMed  CAS  Google Scholar 

  32. Perkins NJ, Schisterman EF. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol. 2006;163:670–5.

    Article  PubMed  Google Scholar 

  33. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. 1–239. Available at http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed 7 June 2012.

  34. The BHIVA Treatment Guidelines Writing Group. BHIVA guidelines for the treatment of HIV-1 positive adults with antiretroviral therapy 2012. British HIV Association. 1–139. Available at http://www.bhiva.org/documents/Guidelines/Treatment/2012/120430TreatmentGuidelines.pdf. Accessed 15 June 2012.

  35. Antiretroviral therapy for HIV infection in adults and adolescents Recommendations for a public health approach 2010 revision. World Health Organization. 1–156. Available at http://whqlibdoc.who.int/publications/2010/9789241599764_eng.pdf. Accessed 7 June 2012.

  36. Kiser JJ, Carten ML, Aquilante CL, Anderson PL, Wolfe P, King TM, et al. The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther. 2008;83:265–72.

    Article  PubMed  CAS  Google Scholar 

  37. Lisowska-Myjak B. Serum and urinary biomarkers of acute kidney injury. Blood Purif. 2010;29:357–65.

    Article  PubMed  CAS  Google Scholar 

  38. Olsson MG, Centlow M, Rutardottir S, Stenfors I, Larsson J, Hosseini-Maaf B, et al. Increased levels of cell-free hemoglobin, oxidation markers, and the antioxidative heme scavenger alpha(1)-microglobulin in preeclampsia. Free Radic Biol Med. 2010;48:284–91.

    Article  PubMed  CAS  Google Scholar 

  39. Hong CY, Chia KS. Markers of diabetic nephropathy. J Diabetes Complications. 1998;12:43–60.

    Article  PubMed  CAS  Google Scholar 

  40. Andersson L, Haraldsson B, Johansson C, Barregard L. Methodological issues on the use of urinary alpha-1-microglobuline in epidemiological studies. Nephrol Dial Transplant. 2008;23:1252–6.

    Article  PubMed  CAS  Google Scholar 

  41. Tencer J, Thysell H, Andersson K, Grubb A. Long-term stability of albumin, protein HC, immunoglobulin G, kappa- and lambda-chain-immunoreactivity, orosomucoid and alpha 1-antitrypsin in urine stored at −20 degrees C. Scand J Urol Nephrol. 1997;31:67–71.

    Article  PubMed  CAS  Google Scholar 

  42. Itoh Y, Kawai T. Human alpha 1-microglobulin: its measurement and clinical significance. J Clin Lab Anal. 1990;4:376–84.

    Article  PubMed  CAS  Google Scholar 

  43. Rodriguez-Novoa S, Labarga P, Soriano V. Pharmacogenetics of tenofovir treatment. Pharmacogenomics. 2009;10:1675–85.

    Article  PubMed  CAS  Google Scholar 

  44. Rodriguez-Novoa S, Alvarez E, Labarga P, Soriano V. Renal toxicity associated with tenofovir use. Expert Opin Drug Saf. 2010;9:545–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all the patients who participated in the study, and Fumihiko Hinoshita, Hirohisa Yazaki, Haruhito Honda, Ei Kinai, Koji Watanabe, Takahiro Aoki, Daisuke Mizushima, Yohei Hamada, Michiyo Ishisaka, Mikiko Ogata, Minami Takahashi, and Akiko Nakano, and all other clinical staff at the AIDS Clinical Center for their help in completion of this study. This work was supported by a Grant-in Aid for AIDS research from the Japanese Ministry of Health, Labour, and Welfare (H23-AIDS-001), and the Global Center of Excellence Program (Global Education and Research Center Aiming at the Control of AIDS) from the Japanese Ministry of Education, Science, Sports and Culture. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

Shinichi Oka has received a research grant from MSD K.K., Abbott Japan Co., Janssen Pharmaceutical K.K., Pfizer Co., and Roche Diagnostics K.K. The other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Gatanaga.

About this article

Cite this article

Nishijima, T., Shimbo, T., Komatsu, H. et al. Urinary beta-2 microglobulin and alpha-1 microglobulin are useful screening markers for tenofovir-induced kidney tubulopathy in patients with HIV-1 infection: a diagnostic accuracy study. J Infect Chemother 19, 850–857 (2013). https://doi.org/10.1007/s10156-013-0576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-013-0576-y

Keywords

Navigation