Skip to main content

Advertisement

Log in

Isomorphic red blood cells using automated urine flow cytometry is a reliable method in diagnosis of bladder cancer

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

We aimed to identify patients with a chief complaint of hematuria who could safely avoid unnecessary radiation and instrumentation in the diagnosis of bladder cancer (BC), using automated urine flow cytometry to detect isomorphic red blood cells (RBCs) in urine.

Methods

We acquired urine samples from 134 patients over the age of 35 years with a chief complaint of hematuria and a positive urine occult blood test or microhematuria. The data were analyzed using the UF-1000i ® (Sysmex Co., Ltd., Kobe, Japan) automated urine flow cytometer to determine RBC morphology, which was classified as isomorphic or dysmorphic. The patients were divided into two groups (BC versus non-BC) for statistical analysis. Multivariate logistic regression analysis was used to determine the predictive value of flow cytometry versus urine cytology, the bladder tumor antigen test, occult blood in urine test, and microhematuria test.

Results

BC was confirmed in 26 of 134 patients (19.4 %). The area under the curve for RBC count using the automated urine flow cytometer was 0.94, representing the highest reference value obtained in this study. Isomorphic RBCs were detected in all patients in the BC group. On multivariate logistic regression analysis, only isomorphic RBC morphology was significantly predictive for BC (p < 0.001). Analytical parameters such as sensitivity, specificity, positive predictive value, and negative predictive value of isomorphic RBCs in urine were 100.0, 91.7, 74.3, and 100.0 %, respectively.

Conclusion

Detection of urinary isomorphic RBCs using automated urine flow cytometry is a reliable method in the diagnosis of BC with hematuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mohr DN, Offord KP, Owen RA et al (1986) Asymptomatic microhematuria and urologic disease: a population-based study. JAMA 256:224–229

    Article  PubMed  CAS  Google Scholar 

  2. Freni SC, Freni-Titulaer LW (1977) Microhematuria found by mass screening of apparently healthy males. Acta Cytol 21:421–423

    PubMed  CAS  Google Scholar 

  3. Cohen RA, Brown RS (2003) Clinical practice. Microscopic hematuria. N Engl J Med 348:2330–2338

    Article  PubMed  Google Scholar 

  4. Grossfeld GD, Litwin MS, Wolf JS Jr et al (2001) Evaluation of asymptomatic microscopic hematuria in adults: the American Urological Association best practice policy—part II: patient evaluation, cytology, voided markers, imaging, cystoscopy, nephrology evaluation, and follow-up. Urology 57:604–610

    Article  PubMed  CAS  Google Scholar 

  5. Lotan Y, Capitanio U, Shariat SF et al (2009) Impact of clinical factors, including a point-of-care nuclear matrix protein-22 assay and cytology, on bladder cancer detection. BJU Int 103:1368–1374

    Article  PubMed  CAS  Google Scholar 

  6. Grossfeld GD, Litwin MS, Wolf JS et al (2001) Evaluation of asymptomatic microscopic hematuria in adults: the American Urological Association best practice policy—part I: definition, detection, prevalence, and etiology. Urology 57:599–603

    Article  PubMed  CAS  Google Scholar 

  7. Grossfeld GD, Wolf JS, Litwin MS et al (2001) Asymptomatic microscopic hematuria in adults: summary of the AUA best practice policy recommendations. Am Fam Physician 63:1145–1154

    PubMed  CAS  Google Scholar 

  8. Jung H, Gleason JM, Loo RK et al (2011) Association of hematuria on microscopic urinalysis and risk of urinary tract cancer. J Urol 185:1698–1703

    Article  PubMed  Google Scholar 

  9. Sutton JM (1990) Evaluation of hematuria in adults. JAMA 263:2475–2480

    Article  PubMed  CAS  Google Scholar 

  10. Thompson IM (1987) The evaluation of microscopic hematuria: a population-based study. J Urol 138:1189–1190

    PubMed  CAS  Google Scholar 

  11. Murakami S, Igarashi T, Hara S et al (1990) Strategies for asymptomatic microscopic hematuria: a prospective study of 1,034 patients. J Urol 144:99–101

    PubMed  CAS  Google Scholar 

  12. Loo RK, Lieberman SF, Slezak JM et al (2013) Stratifying risk of urinary tract malignant tumors in patients with asymptomatic microscopic hematuria. Mayo Clin Proc 88:129–138

    Article  PubMed  Google Scholar 

  13. Cunderlíková B, Wahlqvist R, Berner A et al (2007) Detection of urinary bladder cancer with flow cytometry and hexaminolevulinate in urine samples. Cytopathology 18:87–95

    Article  PubMed  Google Scholar 

  14. Venkat Raman G, Pead L, Lee HA et al (1986) A blind controlled trial of phase-contrast microscopy by two observers for evaluating the source of haematuria. Nephron 44:304–308

    Article  PubMed  CAS  Google Scholar 

  15. Crop MJ, de Rijke YB, Verhagen PC et al (2010) Diagnostic value of urinary dysmorphic erythrocytes in clinical practice. Nephron Clin Pract 115:c203–c212

    Article  PubMed  Google Scholar 

  16. Shichiri M, Hosoda K, Nishio Y et al (1988) Red-cell-volume distribution curves in diagnosis of glomerular and non-glomerular haematuria. Lancet 331:908–911

    Article  Google Scholar 

  17. Pieretti B, Brunati P, Pini B et al (2010) Diagnosis of bacteriuria and leukocyturia by automated flow cytometry compared with urine culture. J Clin Microbiol 48:3990–3996

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang J, Zhang Y, Xu D et al (2010) Evaluation of the Sysmex UF-1000i for the diagnosis of urinary tract infection. Am J Clin Pathol 133:577–582

    Article  PubMed  Google Scholar 

  19. De Rosa R, Grosso S, Bruschetta G et al (2010) Evaluation of the Sysmex UF1000i flow cytometer for ruling out bacterial urinary tract infection. Clin Chim Acta 411:1137–1142

    Article  PubMed  Google Scholar 

  20. Manoni F, Fornasiero L, Ercolin M et al (2009) Cutoff values for bacteria and leukocytes for urine flow cytometer Sysmex UF-1000i in urinary tract infections. Diagn Microbiol Infect Dis 65:103–107

    Article  PubMed  Google Scholar 

  21. Kore RN, Dow CS, Desai KM (1999) A new automated system for urine analysis: a simple, cost-effective and reliable method for distinguishing between glomerular and nonglomerular sources of haematuria. BJU Int 84:454–460

    Article  PubMed  CAS  Google Scholar 

  22. Angulo JC, Lopez-Rubio M, Guil M et al (1999) The value of comparative volumetric analysis of urinary and blood erythrocytes to localize the source of hematuria. J Urol 162:119–126

    Article  PubMed  CAS  Google Scholar 

  23. Ohsaki H, Hirakawa E, Kushida Y et al (2010) Can cytological features differentiate reactive renal tubular cells from low-grade urothelial carcinoma cells? Cytopathology 21:326–333

    Article  PubMed  CAS  Google Scholar 

  24. Kesson AM, Talbott JM, Gyory AZ (1978) Microscopic examination of urine. Lancet 2:809–812

    Article  PubMed  CAS  Google Scholar 

  25. Davis R, Jones JS, Barocas DA et al (2012) American Urological Association. Diagnosis, evaluation and follow-up of asymptomatic microhematuria (AMH) in adults: AUA guideline. J Urol 188:2473–2481

    Article  PubMed  Google Scholar 

  26. Sauter G, Algaba F, Amin M et al (2004) Tumours of the urinary system: non-invasive urothelial neoplasias. In: Eble JN, Sauter G, Epstein Jl, Sesterhenn I (eds) WHO classification of classification of tumors of the urinary system and male genital organs. IARCC Press, Lyon, pp 29–34

    Google Scholar 

  27. Higashihara E, Nishiyama T, Horie S et al (2008) Working group for the creation of hematuria guideline: hematuria. Definition and screening test methods. Int J Urol 15:281–284

    Article  PubMed  Google Scholar 

  28. Manoni F, Tinello A, Fornasiero L et al (2010) Urine particle evaluation: a comparison between the UF-1000i and quantitative microscopy. Clin Chem Lab Med 48:1107–1111

    Article  PubMed  CAS  Google Scholar 

  29. Nanos NE, Delanghe JR (2008) Evaluation of Sysmex UF-1000i for use in cerebrospinal fluid analysis. Clin Chim Acta 392:30–33

    Article  PubMed  CAS  Google Scholar 

  30. Tesser Poloni JA, Bosan IB, Garigali G et al (2012) Urinary red blood cells: not only glomerular or nonglomerular. Nephron Clin Pract 120:c36–c41

    Article  PubMed  Google Scholar 

  31. Vasanthakumar V (1990) A study to assess the efficacy of chemoprophylaxis in the prevention of endoscopy-related bacteraemia in patients age 60 and over. Q J Med 75:647–653

    PubMed  CAS  Google Scholar 

  32. Messing EM, Young TB, Hunt VB et al (1995) Hematuria home screening: repeat testing results. J Urol 154:57–61

    Article  PubMed  CAS  Google Scholar 

  33. Khan MA, Shaw G, Paris AMI (2002) Is microscopic haematuria a urological emergency? BJU Int 90:355–357

    Article  PubMed  CAS  Google Scholar 

  34. Konety BR, Getzenberg RH (2001) Urine based markers of urological malignancy. J Urol 165:600–611

    Article  PubMed  CAS  Google Scholar 

  35. Rife CC, Farrow GM, Utz DC (1979) Urine cytology of transitional cell neoplasms. Urol Clin North Am 6:599–612

    PubMed  CAS  Google Scholar 

  36. Fairley KF, Birch DF (1982) Hematuria: a simple method for identifying glomerular bleeding. Kidney Int 21:105–108

    Article  PubMed  CAS  Google Scholar 

  37. van den Broek D, Keularts IM, Wielders JP et al (2008) Benefits of the iQ200 automated urine microscopy analyser in routine urinalysis. Clin Chem Lab Med 46:1635–1640

    PubMed  Google Scholar 

  38. Kitamoto Y, Yide C, Tomita M et al (1992) The mechanism of glomerular dysmorphic red cell formation in the kidney. Tohoku J Exp Med 167:93–105

    Article  PubMed  CAS  Google Scholar 

  39. Elias K, Svatek RS, Gupta S et al (2010) High risk patients with hematuria are not evaluated according to guideline recommendations. Cancer 116:2954–2959

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Progressive Renal Diseases Research, from the Ministry of Health, Labour and Welfare of Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Horie.

About this article

Cite this article

Muto, S., Sugiura, Si., Nakajima, A. et al. Isomorphic red blood cells using automated urine flow cytometry is a reliable method in diagnosis of bladder cancer. Int J Clin Oncol 19, 928–934 (2014). https://doi.org/10.1007/s10147-013-0623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-013-0623-9

Keyword

Navigation