Skip to main content
Log in

Minimally invasive spine surgery: systematic review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Minimally invasive procedures in spine surgery have undergone significant development in recent times. These procedures have the common aim of avoiding biomechanical complications associated with some traditional destructive methods and improving efficacy. These new techniques prevent damage to crucial posterior stabilizers and preserve the structural integrity and stability of the spine. The wide variety of reported minimally invasive methods for different pathologies necessitates a systematic classification. In the present review, authors first provide a classification system of minimally invasive techniques based on the location of the pathologic lesion to be treated, to help the surgeon in selecting the appropriate procedure. Minimally invasive techniques are then described in detail, including technical features, advantages, complications, and clinical outcomes, based on available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ALIF:

Anterior lumbar interbody fusion

BLBD:

Bilateral laminotomy for bilateral decompression

DLIF:

Direct lateral interbody fusion

MED:

Microendoscopic discectomy

miPLIF:

Minimally invasive posterior lumbar interbody fusion

MISST:

Minimally invasive spine surgery technique

miTLIF:

Minimally invasive transforaminal lumbar interbody fusion

PED:

Percutaneous endoscopic discectomy

PEEK:

Poly-Ether-Ether-Ketone

PLDD:

Percutaneous laser disc decompression

PLIF:

Posterior lumbar interbody fusion

TLIF:

Transforaminal lumbar interbody fusion

ULBD:

Unilateral laminotomy for bilateral decompression

XLIF:

Extreme lateral interbody fusion

References

  1. Ahn Y (2012) Transforaminal percutaneous endoscopic lumbar discectomy: technical tips to prevent complications. Expert Rev Med Devices 9(4):361–366

    CAS  PubMed  Google Scholar 

  2. Arnold PM, Anderson KK, McGuire RA Jr (2012) The lateral transpsoas approach to the lumbar and thoracic spine: a review far lateral approaches (XLIF) in adult scoliosis. Surg Neurol Int 3(Suppl 3):S198–S215

    PubMed Central  PubMed  Google Scholar 

  3. Aryan HE, Newman CB, Gold JJ, Acosta FL Jr, Coover C, Ames CP (2008) Percutaneous axial lumbar interbody fusion (AxiaLIF) of the L5-S1 segment: initial clinical and radiographic experience. Minim Invasive Neurosurg 51(4):225–230

    CAS  PubMed  Google Scholar 

  4. Audat Z, Moutasem O, Yousef K, Mohammad B (2012) Comparison of clinical and radiological results of posterolateral fusion, posterior lumbar interbody fusion and transforaminal lumbar interbody fusion techniques in the treatment of degenerative lumbar spine. Singap Med J 53(3):183–187

    CAS  Google Scholar 

  5. Banczerowski P, Bognar L, Rappaport ZH, Veres R, Vajda J (2014) Novel surgical approach in the management of longitudinal pathologies within the spinal canal: the split laminotomy and “archbone” technique. Adv Tech Stand Neurosurg 41:47–70

    PubMed  Google Scholar 

  6. Banczerowski P, Lipóth L, Veres R (2007) [Bilateral “over the top” decompression through unilateral laminotomy for lumbar and thoracic spinal canal stenosis]. Ideggyogy Sz 60(11–12):467–473, Article in Hungarian

    PubMed  Google Scholar 

  7. Banczerowski P, Vajda J, Veres R (2008) Removal of intraspinal space-occupying lesions through unilateral partial approach, the “hemi-semi laminectomy”. Ideggyogy Sz 61(3–4):114–122, Article in Hungarian

    PubMed  Google Scholar 

  8. Banczerowski P, Vajda J, Veres R (2008) Exploration and decompression of the spinal canal using split laminotomy and its modification, the “archbone” technique. Neurosurgery 62(5 Suppl 2):ONS432–ONS440

    PubMed  Google Scholar 

  9. Banczerowski P, Veres R, Vajda J (2009) Modified minimally invasive surgical approach to cervical neuromas with intraforaminal components: hemi-semi-laminectomy and supraforaminal burr hole (modified foraminotomy) technique. Minim Invasive Neurosurg 52(1):56–58

    CAS  PubMed  Google Scholar 

  10. Banczerowski P, Veres R, Vajda J (2012) New minimally invasive surgical techniques in spinal surgery. Ideggyogy Sz 65(5–6):169–180, Article in Hungarian

    PubMed  Google Scholar 

  11. Banczerowski P, Veres R, Vajda J (2014) Modified surgical approach to cervical neuromas with intraforaminal components: minimal invasive facet joint sparing “open-tunnel” technique. J Neurol Surg A Cent Eur Neurosurg 75(1):16–19

    PubMed  Google Scholar 

  12. Boachie-Adjei O, Cho W, King AB (2013) Axial lumbar interbody fusion (AxiaLIF) approach for adult scoliosis. Eur Spine J 22(Suppl 2):S225–S231

    PubMed  Google Scholar 

  13. Bognár L, Madarassy G, Vajda J (2004) Split laminotomy in pediatric neurosurgery. Childs Nerv Syst 20(2):110–113

    PubMed  Google Scholar 

  14. Bowers C, Amini A, Dailey AT, Schmidt MH (2010) Dynamic interspinous process stabilization: review of complications associated with the X-Stop device. Neurosurg Focus 28(6):E8

    PubMed  Google Scholar 

  15. Casal-Moro R, Castro-Menéndez M, Hernández-Blanco M, Bravo-Ricoy JA, Jorge-Barreiro FJ (2011) Long-term outcome after microendoscopic diskectomy for lumbar disk herniation: a prospective clinical study with a 5-year follow-up. Neurosurgery 68(6):1568–1575

    PubMed  Google Scholar 

  16. Cheung NK, Ferch RD, Ghahreman A, Bogduk N (2013) Long-term follow-up of minimal-access and open posterior lumbar interbody fusion for spondylolisthesis. Neurosurgery 72(3):443–451

    PubMed  Google Scholar 

  17. Chiu JC (2006) Interspinous process decompression (IPD) system (X-STOP) for the treatment of lumbar spinal stenosis. Surg Technol Int 15:265–275

    PubMed  Google Scholar 

  18. Cho DY, Lin HL, Lee WY, Lee HC (2007) Split-spinous process laminotomy and discectomy for degenerative lumbar spinal stenosis: a preliminary report. J Neurosurg Spine 6(3):229–239

    PubMed  Google Scholar 

  19. Choi G, Arbatti NJ, Modi HN, Prada N, Kim JS, Kim HJ et al (2010) Transcorporeal tunnel approach for unilateral cervical radiculopathy: a 2-year follow-up review and results. Minim Invasive Neurosurg 53(3):127–131

    CAS  PubMed  Google Scholar 

  20. Choi G, Lee SH, Bhanot A, Chae YS, Jung B, Lee S (2007) Modified transcorporeal anterior cervical microforaminotomy for cervical radiculopathy: a technical note and early results. Eur Spine J 16(9):1387–1393

    PubMed Central  PubMed  Google Scholar 

  21. Choi G, Lee SH, Bhanot A, Raiturker PP, Chae YS (2007) Percutaneous endoscopic discectomy for extraforaminal lumbar disc herniations: extraforaminal targeted fragmentectomy technique using working channel endoscope. Spine (Phila Pa 1976) 32(2):E93–E99

    Google Scholar 

  22. Choi G, Lee SH, Raiturker PP, Lee S, Chae YS (2006) Percutaneous endoscopic interlaminar discectomy for intracanalicular disc herniations at L5-S1 using a rigid working channel endoscope. Neurosurgery 58(1 Suppl):ONS59–ONS68

    PubMed  Google Scholar 

  23. Choy DS (1991) PLDD offers advantages of safety, simplicity, speed. Clin Laser Mon 9(3):39–41

    CAS  PubMed  Google Scholar 

  24. Choy DS (1995) Clinical experience and results with 389 PLDD procedures with the Nd:YAG laser, 1986 to 1995. J Clin Laser Med Surg 13(3):209–213

    CAS  PubMed  Google Scholar 

  25. Clarke MJ, Ecker RD, Krauss WE, McClelland RL, Dekutoski MB (2007) Same-segment and adjacent-segment disease following posterior cervical foraminotomy. J Neurosurg Spine 6(1):5–9

    PubMed  Google Scholar 

  26. Cole CD, McCall TD, Schmidt MH, Dailey AT (2009) Comparison of low back fusion techniques: transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches. Curr Rev Musculoskelet Med 2(2):118–126

    PubMed Central  PubMed  Google Scholar 

  27. Costa F, Sassi M, Cardia A, Ortolina A, De Santis A, Luccarell G et al (2007) Degenerative lumbar spinal stenosis: analysis of results in a series of 374 patients treated with unilateral laminotomy for bilateral microdecompression. J Neurosurg Spine 7(6):579–586

    PubMed  Google Scholar 

  28. Cragg A, Carl A, Casteneda F, Dickman C, Guterman L, Oliveira C (2004) New percutaneous access method for minimally invasive anterior lumbosacral surgery. J Spinal Disord Tech 17:21–28

    PubMed  Google Scholar 

  29. Curto DD, Kim JS, Lee SH (2013) Minimally invasive posterior cervical microforaminotomy in the lower cervical spine and C-T junction assisted by O-arm-based navigation. Comput Aided Surg 18(3–4):76–83

    PubMed  Google Scholar 

  30. Dezawa A, Mikami H, Sairyo K (2012) Percutaneous endoscopic translaminar approach for herniated nucleus pulposus in the hidden zone of the lumbar spine. Asian J Endosc Surg 5(4):200–203

    PubMed  Google Scholar 

  31. Dezawa A, Sairyo K (2011) New minimally invasive discectomy technique through the interlaminar space using a percutaneous endoscope. Asian J Endosc Surg 4(2):94–98

    CAS  PubMed  Google Scholar 

  32. Epstein NE (2012) A review of interspinous fusion devices: high complication, reoperation rates, and costs with poor outcomes. Surg Neurol Int 3:7

    PubMed Central  PubMed  Google Scholar 

  33. Erkan S, Wu C, Mehbod AA, Hsu B, Pahl DW, Transfeldt EE (2009) Biomechanical evaluation of a new AxiaLIF technique for two-level lumbar fusion. Eur Spine J 18(6):807–814

    PubMed Central  PubMed  Google Scholar 

  34. Eule JM, Breeze R, Kindt GW (1999) Bilateral partial laminectomy: a treatment for lumbar spinal stenosis and midline disc herniation. Surg Neurol 52(4):329–337

    CAS  PubMed  Google Scholar 

  35. Fessler RG, Khoo LT (2002) Minimally invasive cervical microendoscopic foraminotomy: an initial clinical experience. Neurosurgery 51(5 Suppl):S37–S45

    PubMed  Google Scholar 

  36. Foley KT, Gupta SK, Justis JR, Sherman MC (2001) Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus 10(4):E10

    CAS  PubMed  Google Scholar 

  37. Foley KT, Gupta SK (2002) Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg 97(1 Suppl):7–12

    PubMed  Google Scholar 

  38. Foley KT, Smith MM (1997) Microendoscopic discectomy. Tech Neurosurg 3:301–307

    Google Scholar 

  39. Gangi A, Dietemann JL, Ide C, Brunner P, Klinkert A, Warter JM (1996) Percutaneous laser disk decompression under CT and fluoroscopic guidance: indications, techniques, and clinical experience. Radiographics 16(1):89–96

    CAS  PubMed  Google Scholar 

  40. González-Martínez EL, García-Cosamalón PJ, Fernández-Fernández JJ, Ibáñez-Plágaro FJ, Alvarez B (2012) Minimally invasive approach of extramedullary intradural spinal tumours. Review of 30 cases. Neurocirugia (Astur) 23(5):175–181, Article in Spanish

    Google Scholar 

  41. Habib A, Smith ZA, Lawton CD, Fessler RG (2012) Minimally invasive transforaminal lumbar interbody fusion: a perspective on current evidence and clinical knowledge. Minim Invasive Surg 2012:657342

    PubMed Central  PubMed  Google Scholar 

  42. Han IH, Kuh SU, Kim JH, Chin DK, Kim KS, Yoon YS et al (2008) Clinical approach and surgical strategy for spinal diseases in pregnant women: a report of ten cases. Spine (Phila Pa 1976) 33(17):E614–E619

    Google Scholar 

  43. Hilton DL Jr (2007) Minimally invasive tubular access for posterior cervical foraminotomy with three-dimensional microscopic visualization and localization with anterior/posterior imaging. Spine J 7(2):154–158

    PubMed  Google Scholar 

  44. Hong SW, Choi KY, Ahn Y, Baek OK, Wang JC, Lee SH et al (2011) A comparison of unilateral and bilateral laminotomies for decompression of L4-L5 spinal stenosis. Spine (Phila Pa 1976) 36(3):E172–E178

    Google Scholar 

  45. Hong WJ, Kim WK, Park CW, Lee SG, Yoo CJ, Kim YB et al (2006) Comparison between transuncal approach and upper vertebral transcorporeal approach for unilateral cervical radiculopathy—a preliminary report. Minim Invasive Neurosurg 49(5):296–301

    CAS  PubMed  Google Scholar 

  46. Houten JK, Alexandre LC, Nasser R, Wollowick AL (2011) Nerve injury during the transpsoas approach for lumbar fusion. J Neurosurg Spine 15(3):280–284

    PubMed  Google Scholar 

  47. Hsieh PC, Koski TR, O’Shaughnessy BA, Sugrue P, Salehi S, Ondra S et al (2007) Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 7(4):379–386

    PubMed  Google Scholar 

  48. Hsu KY, Zuchermann JF, Hartjen CA, Mehalic TF, Implicito DA, Martin MJ et al (2006) Quality of life of lumbar stenosis-treated patients in whom the X STOP interspinous device was implanted. J Neurosurg Spine 5:500–507

    PubMed  Google Scholar 

  49. Jagannathan J, Sherman JH, Szabo T, Shaffrey CI, Jane JA (2009) The posterior cervical foraminotomy in the treatment of cervical disc/osteophyte disease: a single-surgeon experience with a minimum of 5 years’ clinical and radiographic follow-up. J Neurosurg Spine 10(4):347–356

    PubMed  Google Scholar 

  50. Jang JW, Park JH, Hyun SJ, Rhim SC (2012) Clinical outcomes and radiologic changes following microsurgical bilateral decompression via a unilateral approach in patients with lumbar canal stenosis and grade I degenerative spondylolisthesis with a minimum 3-year follow-up. J Spinal Disord Tech

  51. Jho HD (1996) Microsurgical anterior cervical foraminotomy. A new approach to cervical disc herniation. J Neurosurg 84(2):155–160

    CAS  PubMed  Google Scholar 

  52. Jho HD, Kim WK, Kim MH (2002) Anterior microforaminotomy for treatment of cervical radiculopathy: part 1—disc preserving “functional cervical disc surgery”. Neurosurgery 51(5 Suppl):S46–53

    PubMed  Google Scholar 

  53. Jiang SD, Chen JW, Jiang LS (2012) Which procedure is better for lumbar interbody fusion: anterior lumbar interbody fusion or transforaminal lumbar interbody fusion? Arch Orthop Trauma Surg 132(9):1259–1266

    PubMed  Google Scholar 

  54. Jödicke A, Daentzer D, Kästner S, Asamoto S, Böker DK (2003) Risk factors for outcome and complications of dorsal foraminotomy in cervical disc herniation. Surg Neurol 60(2):124–129, discussion 129–30

    PubMed  Google Scholar 

  55. Kepler CK, Bogner EA, Herzog RJ, Huang RC (2011) Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J 20:550–556

    PubMed Central  PubMed  Google Scholar 

  56. Khoo LT, Palmer S, Laich DT, Fessler RG (2002) Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery 51(5 Suppl):S166–1

    PubMed  Google Scholar 

  57. Khoo LT, Perez-Cruet MJ, Laich DT, Fessler RG (2002) Posterior cervical microendoscopic foraminotomy. In: Perez-Cruet MJ, Fessler RG (eds) Outpatient spinal surgery. Quality Medical Publishing, Inc., St. Louis, pp 71–93

    Google Scholar 

  58. Kim DH, Shanti N, Tantorski ME, Shaw JD, Li L, Martha JF et al (2012) Association between degenerative spondylolisthesis and spinous process fracture after interspinous process spacer surgery. Spine J 12(6):466–472

    PubMed  Google Scholar 

  59. Kim JS, Choi WG, Lee SH (2010) Minimally invasive anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation for isthmic spondylolisthesis: minimum 5-year follow-up. Spine J 10(5):404–409

    PubMed  Google Scholar 

  60. Kim JS, Jung B, Lee SH (2012) Instrumented minimally invasive spinal-transforaminal lumbar interbody fusion (MIS-TLIF); minimum 5-years follow-up with clinical and radiologic outcomes. J Spinal Disord Tech. doi:10.1097/BSD.0b013e31827415cd

  61. Kim JS, Kang BU, Lee SH, Jung B, Choi YG, Jeon SH et al (2009) Mini-transforaminal lumbar interbody fusion versus anterior lumbar interbody fusion augmented by percutaneous pedicle screw fixation: a comparison of surgical outcomes in adult low-grade isthmic spondylolisthesis. J Spinal Disord Tech 22(2):114–121

    PubMed  Google Scholar 

  62. Kim K, Isu T, Sugawara A, Matsumoto R, Isobe M (2008) Comparison of the effect of 3 different approaches to the lumbar spinal canal on postoperative paraspinal muscle damage. Surg Neurol 69(2):109–113

    PubMed  Google Scholar 

  63. Kim KT, Kim YB (2009) Comparison between open procedure and tubular retractor assisted procedure for cervical radiculopathy: results of a randomized controlled study. J Korean Med Sci 24(4):649–653

    PubMed Central  PubMed  Google Scholar 

  64. Kishan A, Gropper MR (2006) Thoracic laminectomy. In: Fessler RG, Sekhar L (eds) Atlas of neurosurgical techniques: spine and peripheral nerves. Thieme, Inc., New York, pp 448–451

    Google Scholar 

  65. Koch-Wiewrodt D, Wagner W, Perneczky A (2007) Unilateral multilevel interlaminar fenestration instead of laminectomy or hemilaminectomy: an alternative surgical approach to intraspinal space occupying lesions. J Neurosurg Spine 6:485–492

    PubMed  Google Scholar 

  66. Koga S, Sairyo K, Shibuya I, Kanamori Y, Kosugi T, Matsumoto H et al (2012) Minimally invasive removal of a recurrent lumbar herniated nucleus pulposus by the small incised microendoscopic discectomy interlaminar approach. Asian J Endosc Surg 5(1):34–37

    CAS  PubMed  Google Scholar 

  67. Komp M, Hahn P, Merk H, Godolias G, Ruetten S (2011) Bilateral operation of lumbar degenerative central spinal stenosis in full-endoscopic interlaminar technique with unilateral approach: prospective 2-year results of 74 patients. J Spinal Disord Tech 24(5):281

    PubMed  Google Scholar 

  68. Kondrashov DG, Hannibal M, Hsu KY, Zucherman JF (2006) Interspinous process decompression with the X-STOP device for lumbar spinal stenosis. A 4-year follow-up study. J Spinal Disord Tech 19:323–327

    PubMed  Google Scholar 

  69. Lauryssen C (2007) Appropriate selection of patients with lumbar spinal stenosis for interspinous decompression with the XSTOP device. Neurosurg Focus 22(1):E5

    PubMed  Google Scholar 

  70. Lawton CD, Smith ZA, Barnawi A, Fessler RG (2011) The surgical technique of minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Sci 55(3):259–264

    CAS  PubMed  Google Scholar 

  71. Lee CH, Hyun SJ, Kim KJ, Jahng TA, Kim HJ (2012) What is a reasonable surgical procedure for spinal extradural arachnoid cysts: is cyst removal mandatory? Eight consecutive cases and a review of the literature. Acta Neurochir (Wien) 154(7):1219–1227

    Google Scholar 

  72. Lee JC, Jang HD, Shin BJ (2012) Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion: our experience in 86 consecutive cases. Spine (Phila Pa 1976) 37(18):1548–1557

    Google Scholar 

  73. Lee JY, Löhr M, Impekoven P, Koebke J, Ernestus RI, Ebel H et al (2006) Small keyhole transuncal foraminotomy for unilateral cervical radiculopathy. Acta Neurochir (Wien) 148(9):951–958

    Google Scholar 

  74. Lee P, Fessler RG (2012) Perioperative and postoperative complications of single-level minimally invasive transforaminal lumbar interbody fusion in elderly adults. J Clin Neurosci 19(1):111–114

    PubMed  Google Scholar 

  75. Lew SM, Mehalic TF, Fagone KL (2001) Transforaminal percutaneous endoscopic discectomy in the treatment of far-lateral and foraminal lumbar disc herniations. J Neurosurg 94(2 Suppl):216–220

    CAS  PubMed  Google Scholar 

  76. Lindley EM, McCullough MA, Burger EL, Brown CW, Patel VV (2011) Complications of axial lumbar interbody fusion. J Neurosurg Spine 15(3):273–279

    PubMed  Google Scholar 

  77. Logroscino CA, Proietti L, Pola E, Scaramuzzo L, Tamburrelli FC (2011) A minimally invasive posterior lumbar interbody fusion for degenerative lumbar spine instabilities. Eur Spine J 20(Suppl 1):S41–S45

    PubMed  Google Scholar 

  78. Marchi L, Oliveira L, Amaral R, Castro C, Coutinho T, Coutinho E et al (2012) Lateral interbody fusion for treatment of discogenic low back pain: minimally invasive surgical techniques. Adv Orthop 2012:282068

    PubMed Central  PubMed  Google Scholar 

  79. Marchi L, Oliveira L, Coutinho E, Pimenta L (2012) Results and complications after 2-level axial lumbar interbody fusion with a minimum 2-year follow-up. J Neurosurg Spine 17(3):187–192

    PubMed  Google Scholar 

  80. Mathews HH, Evans MT, Molligan HJ, Long BH (1995) Laparoscopic discectomy with anterior lumbar interbody fusion: a preliminary review. Spine (Phila Pa 1976) 20(16):1797–1802

    CAS  Google Scholar 

  81. Mayer HM (1997) A new technique of minimally invasive anterior lumbar spine fusion. Spine 22:691–699

    CAS  PubMed  Google Scholar 

  82. Mayer HM, Brock M (1993) Percutaneous endoscopic discectomy: surgical technique and preliminary results compared to microsurgical discectomy. J Neurosurg 78(2):216–225

    CAS  PubMed  Google Scholar 

  83. McAfee PC, Regan JJ, Geis WP, Fedder IL (1998) Minimally invasive anterior retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK. Spine 23:1476–1484

    CAS  PubMed  Google Scholar 

  84. Mikhael MM, Celestre PC, Wolf CF, Mroz TE, Wang JC (2012) Minimally invasive cervical spine foraminotomy and lateral mass screw placement. Spine (Phila Pa 1976) 37(5):E318–E322

    Google Scholar 

  85. Min JH, Jang JS, Lee SH (2007) Comparison of anterior- and posterior-approach instrumented lumbar interbody fusion for spondylolisthesis. J Neurosurg Spine 7(1):21–26

    PubMed  Google Scholar 

  86. Mobbs RJ, Sivabalan P, Li J (2011) Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci 18(6):741–749

    PubMed  Google Scholar 

  87. Nakanishi K, Tanaka N, Fujimoto Y, Okuda T, Kamei N, Nakamae T et al (2013) Medium-term clinical results of microsurgical lumbar flavectomy that preserves facet joints in cases of lumbar degenerative spondylolisthesis: comparison of bilateral laminotomy with bilateral decompression by a unilateral approach. J Spinal Disord Tech 26(7):351–358

    PubMed  Google Scholar 

  88. Oertel MF, Ryang YM, Korinth MC, Gilsbach JM, Rohde V (2006) Long-term results of microsurgical treatment of lumbar spinal stenosis by unilateral laminotomy for bilateral decompression. Neurosurgery 59(6):1264–1269, discussion 1269–70

    PubMed  Google Scholar 

  89. Okuda S, Iwasaki M, Miyauchi A, Aono H, Morita M, Yamamoto T (2004) Risk factors for adjacent segment degeneration after PLIF. Spine (Phila Pa 1976) 29(14):1535–1540

    Google Scholar 

  90. Oppenheimer JH, DeCastro I, McDonnell DE (2009) Minimally invasive spine technology and minimally invasive spine surgery: a historical review. Neurosurg Focus 27(3):E9

    PubMed  Google Scholar 

  91. Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6(4):435–443

    PubMed  Google Scholar 

  92. Padanyi C, Vajda J, Banczerowski P (2014) Para-split laminotomy: a rescue technique for split laminotomy approach in exploring intramedullary midline located pathologies. J Neurol Surg A Cent Eur Neurosurg. 75(4):310–316

  93. Papavero L, Thiel M, Fritzsche E, Kunze C, Westphal M, Kothe R (2009) Lumbar spinal stenosis: prognostic factors for bilateral microsurgical decompression using a unilateral approach. Neurosurgery 65(6 Suppl):182–187

    PubMed  Google Scholar 

  94. Papp Z, Vajda J, Veres R, Banczerowski P (2010) Minimal invasive surgical techniques for the treatment of pathologic lesions, situated in the midline of the spinal canal. Biomech Hung 3(1):189–200

    Google Scholar 

  95. Papp Z (2009) Removal of multiple thoracic dumbbell tumours through combined hemi-semi laminectomy and minimal invasive paraspinal approach. Ideggyogy Sz 62(7–8):265–270, Article in Hungarian

    PubMed  Google Scholar 

  96. Park SH, Park WM, Park CW, Kang KS, Lee YK, Lim SR (2009) Minimally invasive anterior lumbar interbody fusion followed by percutaneous translaminar facet screw fixation in elderly patients. J Neurosurg Spine 10(6):610–616

    PubMed  Google Scholar 

  97. Parker SL, Mendenhall SK, Shau DN, Zuckerman SL, Godil SS, Cheng JS et al (2013) Minimally invasive versus open transforaminal lumbar interbody fusion (TLIF) for degenerative spondylolisthesis: comparative effectiveness and cost-utility analysis. World Neurosurg. doi:10.1016/j.wneu.2013.01.041

    Google Scholar 

  98. Perez-Cruet MJ, Foley KT, Isaacs RE, Rice-Wyllie L, Wellington R, Smith MM et al (2002) Microendoscopic lumbar discectomy: technical note. Neurosurgery 51(5 Suppl):S129–S136

    PubMed  Google Scholar 

  99. Plancarte R, Calvillo O (1997) Complex regional pain syndrome type 2 (causalgia) after automated laser discectomy. A case report. Spine 22:459–461

    CAS  PubMed  Google Scholar 

  100. Rapp SM, Miller LE, Block JE (2011) AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion. Med Devices (Auckl) 4:125–131

    Google Scholar 

  101. Regev GJ, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW (2009) Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine 34:1330–1335

    PubMed  Google Scholar 

  102. Richards JC, Majumdar S, Lindsey DP, Beaupre GS, Yerby SA (2005) The treatment mechanism of an interspinous process implant for lumbar neurogenic claudication. Spine 30:744–749

    PubMed  Google Scholar 

  103. Ringel F, Stoffel M, Stüer C, Meyer B (2006) Minimally invasive transmuscular pedicle screw fixation of the thoracic and lumbar spine. Neurosurgery 59(4 Suppl 2):ONS361–ONS366

    PubMed  Google Scholar 

  104. Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976) 36(1):26–32

    Google Scholar 

  105. Rouben D, Casnellie M, Ferguson M (2011) Long-term durability of minimal invasive posterior transforaminal lumbar interbody fusion: a clinical and radiographic follow-up. J Spinal Disord Tech 24(5):288–296

    PubMed  Google Scholar 

  106. Ruetten S, Komp M, Merk H, Godolias G (2008) Full-endoscopic cervical posterior foraminotomy for the operation of lateral disc herniations using 5.9-mm endoscopes: a prospective, randomized, controlled study. Spine (Phila Pa 1976) 33(9):940–948

    Google Scholar 

  107. Sairyo K, Sakai T, Higashino K, Inoue M, Yasui N, Dezawa A (2010) Complications of endoscopic lumbar decompression surgery. Minim Invasive Neurosurg 53(4):175–178

    CAS  PubMed  Google Scholar 

  108. Sario-glu AC, Hanci M, Bozkuş H, Kaynar MY, Kafadar A (1997) Unilateral hemilaminectomy for the removal of the spinal space-occupying lesions. Minim Invasive Neurosurg 40(2):74–77

    CAS  PubMed  Google Scholar 

  109. Schulte LM, O’Brien JR, Matteini LE, Yu WD (2011) Change in sagittal balance with placement of an interspinous spacer. Spine (Phila Pa 1976) 36(20):E1302–E1305

    Google Scholar 

  110. Schwender JD, Holly L, Rouben D, Foley K (2005) Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech 18:1–6

    Google Scholar 

  111. Siddiqui M, Karadimas E, Nicol M, Smith FW, Wardlaw D (2006) Influence of X Stop on neural foraminal and spinal canal area in spinal stenosis. Spine 31:2958–2962

    PubMed  Google Scholar 

  112. Singh V, Manchikanti L, Benyamin RM, Helm S, Hirsch JA (2009) Percutaneous lumbar laser disc decompression: a systematic review of current evidence. Pain Physician 12(3):573–588

    PubMed  Google Scholar 

  113. Smith JS, Eichholz KM, Shafizadeh S, Ogden AT, O’Toole JE, Fessler RG (2013) Minimally invasive thoracic microendoscopic diskectomy: surgical technique and case series. World Neurosurg 80(3–4):421–427

    PubMed  Google Scholar 

  114. Smith WD, Youssef JA, Christian G, Serrano S, Hyde JA (2011) Lumbarized sacrum as a relative contraindication for lateral transpsoas interbody fusion at L5-6. J Spinal Disord Tech 26:156–165

    Google Scholar 

  115. Spetzger U, Bertalanffy H, Naujokat C, von Keyserlingk DG, Gilsbach JM (1997) Unilateral laminotomy for bilateral decompression of lumbar spinal stenosis. Part I: anatomical and surgical considerations. Acta Neurochir (Wien) 139(5):392–396

    CAS  Google Scholar 

  116. Spetzger U, Bertalanffy H, Reinges MH, Gilsbach JM (1997) Unilateral laminotomy for bilateral decompression of lumbar spinal stenosis. Part II: clinical experiences. Acta Neurochir (Wien) 139(5):397–403

    CAS  Google Scholar 

  117. Tandon N, Vollmer DG (2006) Cervical laminectomy. In: Fessler RG, Sekhar L (eds) Atlas of neurosurgical techniques: spine and peripheral nerves. Thieme, Inc, New York, pp 233–238

    Google Scholar 

  118. Tenenbaum S, Arzi H, Herman A, Friedlander A, Levinkopf M, Arnold PM et al (2011) Percutaneous posterolateral transforaminal endoscopic discectomy: clinical outcome, complications, and learning curve evaluation. Surg Technol Int XXI:278–283

    PubMed  Google Scholar 

  119. Than KD, Wang AC, Rahman SU, Wilson TJ, Valdivia JM, Park P et al (2011) Complication avoidance and management in anterior lumbar interbody fusion. Neurosurg Focus 31(4):E6

    PubMed  Google Scholar 

  120. Thomé C, Zevgaridis D, Leheta O, Bäzner H, Pöckler-Schöniger C, Wöhrle J et al (2005) Outcome after less-invasive decompression of lumbar spinal stenosis: randomized comparison of unilateral laminotomy, bilateral laminotomy and laminectomy. J Neurosurg Spine 3:129–141

    PubMed  Google Scholar 

  121. Tobler WD, Gerszten PC, Bradley WD, Raley TJ, Nasca RJ, Block JE (2011) Minimally invasive axial presacral L5-S1 interbody fusion: two-year clinical and radiographic outcomes. Spine (Phila Pa 1976) 36(20):E1296–E1301

    Google Scholar 

  122. Wang B, Lü G, Patel AA, Ren P, Cheng I (2011) An evaluation of the learning curve for a complex surgical technique: the full endoscopic interlaminar approach for lumbar disc herniations. Spine J 11(2):122–130

    PubMed  Google Scholar 

  123. Wang J, Zhou Y, Feng Zhang Z, Qing Li C, Jie Zheng W, Liu J (2012) Comparison of clinical outcome in overweight or obese patients after minimally invasive versus open transforaminal lumbar interbody fusion. J Spinal Disord Tech 27(4):202–206

    Google Scholar 

  124. Wang M, Zhou Y, Wang J, Zhang Z, Li C (2012) A 10-year follow-up study on long-term clinical outcomes of lumbar microendoscopic discectomy. J Neurol Surg A Cent Eur Neurosurg 73(4):195–198

    CAS  PubMed  Google Scholar 

  125. Watanabe K, Hosoya T, Shiraishi T, Matsumoto M, Chiba K, Toyama Y (2005) Lumbar spinous process-splitting laminectomy for lumbar canal stenosis. Technical note. J Neurosurg Spine 3(5):405–408

    PubMed  Google Scholar 

  126. Watanabe K, Matsumoto M, Ikegami T, Nishiwaki Y, Tsuji T, Ishii K et al (2011) Reduced postoperative wound pain after lumbar spinous process-splitting laminectomy for lumbar canal stenosis: a randomized controlled study. J Neurosurg Spine 14(1):51–58

    PubMed  Google Scholar 

  127. Winder MJ, Thomas KC (2011) Minimally invasive versus open approach for cervical laminoforaminotomy. Can J Neurol Sci 38(2):262–267

    PubMed  Google Scholar 

  128. Witzmann A, Hejazi N, Krasznai L (2000) Posterior cervical foraminotomy. A follow-up study of 67 surgically treated patients with compressive radiculopathy. Neurosurg Rev 23(4):213–217

    CAS  PubMed  Google Scholar 

  129. Woertgen C, Rothoerl RD, Henkel J, Brawanski A (2000) Long term outcome after cervical foraminotomy. J Clin Neurosci 7(4):312–315

    CAS  PubMed  Google Scholar 

  130. Yaşargil MG, Tranmer BI, Adamson TE, Roth P (1991) Unilateral partial hemi-laminectomy for the removal of extra- and intramedullary tumours and AVMs. Adv Tech Stand Neurosurg 18:113–132

    PubMed  Google Scholar 

  131. Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E et al (2010) Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine (Phila Pa 1976) 35(26 Suppl):S302–S311

    Google Scholar 

  132. Yu Y, Zhang X, Hu F, Xie T, Gu Y (2011) Minimally invasive microsurgical treatment of cervical intraspinal extramedullary tumors. J Clin Neurosci 18(9):1168–1173

    PubMed  Google Scholar 

  133. Zdeblick TA, Phillips FM (2003) Interbody cage devices. Spine (Phila Pa 1976) 28(15 Suppl):S2–S7

    Google Scholar 

  134. Zucherman JF, Zdeblick TA, Bailey SA, Mahvi D, Hsu KY, Kohrs D (1995) Instrumented laparoscopic spinal fusion. Preliminary results. Spine (Phila Pa 1976) 20(18):2029–2034

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Zsófia Perjés M.D. for the excellent illustrations.

Conflict of interest

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Banczerowski.

Additional information

Comments

Tamas Doczi, Pecs, Hungary

The goals of minimally invasive spine surgery are (1) to avoid biomechanical complications inherent in traditional destructive techniques and (2) to improve the efficacy of surgical management of various spinal diseases. The purpose is aimed to be achieved by avoiding structural damage to crucial posterior stabilizing elements and by preserving both anatomical integrity and stability of the spine. The aim of this manuscript is to formulate a systematic classification of various minimally invasive methods previously reported that were applied for different pathologies. The authors also claim that the manuscript shall help spinal surgeons in the selection of the appropriate approach or procedure. To achieve these goals, minimally invasive techniques have been described in details including technical features, advantages, complications, and clinical outcomes based on personal experience and available literature. As an overview, it is not an original study in terms of setting first a hypothesis then trying to prove or disprove the concept with facts and figures that are based on either own data or on those collected from literature search. It is a description of available surgical techniques and creation of a system according to the authors’ personal view. It is rather questionable whether the manuscript can really help spinal surgeons in the selection of the appropriate procedure in an individual case. As a trial of setting a nomenclature for spinal surgeons in the field of minimally invasive surgery, this manuscript well deserves publication.

Sandro M. Krieg, Bernhard Meyer, Munich, Germany

Nowadays, spine surgeons have a large armamentarium of procedures and treatment options at hand, which also include various minimally invasive procedures. It is therefore highly welcomed that the present review offers not only an overview but also the recommendation for a classification system of minimally invasive techniques. The targets of this article are two different types of surgeons: experienced spine surgeons who might get another view on some of their own surgical approaches and junior surgeons who need a structured overview for daily decision-making processes.

However, a very wide variety of approaches is presented and some quantification concerning the frequency of use or applicability as well as actual percentages of treatment success or complications seem desirable. Moreover, the characterization and choice of references concerning endoscopic techniques are highly biased and do not mirror daily routine or the current state of evidence. This accords also to laser techniques. More critical statements from an evidence-based point of view would increase the value of this article. Moreover, in the age of increasing use of posterior dynamic stabilization by screw-rod systems, this option deserves at least some notice in a systematic overview.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banczerowski, P., Czigléczki, G., Papp, Z. et al. Minimally invasive spine surgery: systematic review. Neurosurg Rev 38, 11–26 (2015). https://doi.org/10.1007/s10143-014-0565-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-014-0565-3

Keywords

Navigation