Skip to main content
Log in

Identification of candidate genes for grain number in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Large number of well-filled grains per panicle is an important yield component trait in rice. A combination of QTL mapping and transcriptome profiling was used to identify candidate genes for grain number. A framework linkage map was constructed using 166 SSR markers evenly distributed over the 12 rice chromosomes. QTL mapping using 3 years phenotyping data on a set of recombinant inbred lines derived from a cross between Pusa 1266 (high grain number) and Pusa Basmati 1 (low grain number) identified one consistent QTL qGN4-1 on the long arm of chromosome 4 with major effect on grain number. This QTL was co-localized with major QTLs for primary and secondary branches per panicle, and number of panicles per plant. The QTL interval was narrowed down to 11.1 cM (0.78 Mbp) by targeted enrichment of the region with six additional markers. Microarray transcriptome profiling revealed eight genes in the qGN4-1 region differentially expressed between the two parents during early panicle development. Synteny of this QTL and potential candidates was examined in wheat, barley, maize, sorghum, and Brachypodium to further validate the association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, Al-Majali KM, Trembling PM, Mann CJ, Shoulders CC, Graf D, St. Lezin E, Kurtz TW, Kren V, Pravenec M, Ibrahimi A, Abumrad NA, Stanton LW, Scott J (1999) Identification of Cd36, fat as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21:6–83

    Article  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Furutani S, Sukega WA, Kyozuka J (2006) Genome-wide analysis of spatial and temporal gene expression in rice panicle development. Plant J 46:503–511

    Article  CAS  PubMed  Google Scholar 

  • Hittalmani S, Huang N, Courtois B et al (2003) Identification of QTL for growth and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet 107:679–690

    Article  PubMed  Google Scholar 

  • Horsley RD, Schmiererb D, Maierb C, Kudrnac D, Urread CA, Steffensone BJ, Schwarza PB, Franckowiaka JD, Greena MJ, Zhangf B, Kleinhofsb A (2006) Identification of QTLs associated with fusarium head blight resistance in barley accession CIho 4196. Crop Sci 46:145–156

    Article  CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  CAS  PubMed  Google Scholar 

  • IRGSP (2005) The map based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Khush GS (2003) Challenges for meeting the global food and nutrient needs in the new millennium. Proc Nutr Soc 60:15–26

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kuchel H, Williams KJ, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor Appl Genet 115:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170:185–194

    Article  CAS  PubMed  Google Scholar 

  • Lima MLA, de Souza CL, Bento DAV, de Souza AP, Garcia AAF (2006) Mapping of grain yield and plant traits in a tropical maize population. Mol Breeding 17:227–239

    Article  Google Scholar 

  • Lin HX, Qian HR, Zhuang JY, Lu J, Min SK, Xiong ZM, Huang N, Zheng KL (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza Sativa L.). Theor Appl Genet 92:920–927

    Article  CAS  Google Scholar 

  • Liu GL, Mei HW, Yu XQ, Zou GH, Liu HY, Hu SP, Li MS, Wu JH, Chen L, Luo LJ (2008) QTL analysis of panicle neck diameter, a trait highly correlated with panicle size, under well-watered and drought conditions in rice (Oryza sativa L.). Plant Sci 174:71–77

    Article  CAS  Google Scholar 

  • Liu T, Mao D, Zhang S, Xu C, Xing Y (2009) Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theor Appl Genet 118:1509–1517

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Shen L, He P, Chen Y, Zhu L, Tan Z, Xu Y (1996) Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor Appl Genet 93:1211–1217

    Article  CAS  Google Scholar 

  • Marino R, Ponnaiah M, Krajewski P, Frova C, Gianfranceschi L, Pè ME, Sari-Gorla M (2009) Addressing drought tolerance in maize by transcriptional profiling and mapping. Mol Genet Genomics 218:163–179

    Article  Google Scholar 

  • Mei HW, Li JK, Shu QY, Guo LB, Wang YP, Yu XQ, Ying CS, Luo LJ (2005) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred line population and two backcross populations. Theor Appl Genet 110:649–659

    Article  CAS  PubMed  Google Scholar 

  • Mester DI, Ronin YI, Nevo E, Korol AB (2004) Fast and high precision algorithms for optimization in large-scale genomic problems. Comput Biol Chem 28:281–290

    Article  CAS  PubMed  Google Scholar 

  • Minic Z (2008) Physiological roles of plant glycoside hydrolases. Planta 227:723–740

    Article  CAS  PubMed  Google Scholar 

  • Redona ED, Mackill DJ (1998) Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet 96:957–963

    Article  CAS  Google Scholar 

  • Sasahara H, Fukuta Y, Fukuyama T (1999) Mapping of QTLs for vascular bundle system and spike morphology in rice, (Oryza sativa L.). Breed Sci 49:75–81

    CAS  Google Scholar 

  • Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K (2002) The tomato blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA 99:1064–1069

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Deshmukh RK, Singh A, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2010) Highly variable SSR markers suitable for rice genotyping using agarose gels. Mol Breeding 25:359–364

    Article  CAS  Google Scholar 

  • Sabadin PK, de Souza CL, de Souza AP, Garcia AAF (2008) QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145:194–203

    Article  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2003) Windows QTL Cartographer, version 2.0. Department of Statistics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  Google Scholar 

  • Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. ruffipogon cross. Theor Appl Genet 116:613–622

    Article  PubMed  Google Scholar 

  • Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang Q (2008) Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet 116:789–796

    Article  CAS  PubMed  Google Scholar 

  • Xing Z, Tan F, Hua P, Sun L, Xu G, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 116:613–622

    Google Scholar 

  • Yagi T, Nagata K, Fukuta Y, Tamura K, Ashikawa I, Terao T (2001) QTL mapping of spikelet number in rice (Oryza sativa L.). Breed Sci 51:53–56

    Article  CAS  Google Scholar 

  • Yamagishi M, Takeuchi Y, Kono I, Yano M (2002) QTL mapping for panicle characteristics in temperate Japonica rice. Euphytica 128:219–224

    Article  CAS  Google Scholar 

  • Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

  • Zhang X, Feng B, Zhang Q, Zhang D, Altman N, Ma H (2005) Genome-wide expression profiling and identification of gene activities during early flower development in Arabidopsis. Plant Mol Biol 58:401–419

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Luo L, Liu T, Xu C, Xing Y (2009) Four rice QTL controlling number of spikelets per panicle expressed the characteristics of single Mendelian gene in near isogenic backgrounds. Theor Appl Genet 118:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL (1997) Analysis of QTLs × environment interaction for yield components and plant height in rice. Theor Appl Genet 95:799–808

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Department of Biotechnology, Government of India for financial support of the grant BT/AB/03/FG-2/2003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Details of primers used for qRT-PCR analysis of eight candidate genes using RNA samples isolated from early stage primordia from Pusa 1266 and Pusa Basmati1 (DOC 69 kb)

Table S2

Correlation coefficients of grain number (GN) and associated traits (PB = Primary branches, SB = Secondary branches, PL = Panicle length, and NP = Number of panicles), in 161 RILs from Pusa 1266/Pusa Basmati 1 cross in 3 years (DOC 70 kb)

Table S3

Details of primers used to narrow down the grain number QTL qGN4-1 in the marker interval RM2441-HvSSR04-49 on rice chromosome 4 (DOC 68 kb)

Table S4

Functional annotation of eight differentially expressed candidate genes in QTL region qGN4-1 (DOC 538 kb)

Table S5

Details of single nucleotide polymorphismSNP and insertion/deletionInDel observed in Pusa 1266/Pusa Basmati 1 by pairwise DNA sequence alignment of the promoter regions of eight differentially expressed genes in the qGN4-1 region after resequencing (DOC 529 kb)

Fig. S1

Frequency distribution of primary branches per panicle in RIL population derived from cross between Pusa 1266 (P1) and Pusa Basmati 1 (P2) in three different years (DOC 113 kb)

Fig. S2

Frequency distribution of secondary branches per panicle in RIL population derived from cross between Pusa 1266 (P1) and Pusa Basmati 1 (P2) in three different years (DOC 125 kb)

Fig. S3

Frequency distribution of panicle length in RIL population derived from cross between Pusa 1266 (P1) and Pusa Basmati 1 (P2) in three different years (DOC 130 kb)

Fig. S4

Frequency distribution of panicle number in RIL population derived from cross between Pusa 1266 (P1) and Pusa Basmati 1 (P2) in three different years (DOC 124 kb)

Fig. S5

Molecular genetic linkage map of 172 markers (166 from initial mapping and 6 addition markers in the qGN4-1 region) developed using 161 RILs derived from the cross between Pusa 1266 and Pusa Basmati 1. Distance between markers were based on Kosambi function and calculated using MultiPoint 1.2 software (DOC 87 kb)

Fig. S6

Chromatogram of QTLs detected for the grain number and associated traits across 3 years in RIL population derived from the cross between Pusa 1266 and Pusa Basmati 1 by using QTL cartographer 2 showing LOD score and additive effect of loci (DOC 96 kb)

Fig. S7

Chromatogram of QTLs detected for the grain number per panicle across 3 years in RIL population derived from the cross between Pusa 1266 and Pusa Basmati 1 A QTL interval detected at first step of mapping using linkage map of 166 molecular markers, B which further narrowed down by using six newly designed markers (DOC 104 kb)

Fig. S8

Frequency distribution of grain number in 537 F2 progenies derived from Pusa 1266/Pusa Basmati 1 cross, screened for HvSSR04-40 and HvSSR04-46 markers flanking the grain number QTL qGN4-1 (DOC 98 kb)

Fig. S9

Gene colinearity between qGN4-1 region of rice chromosome 4 and other cereals. Dotted lines indicate the position of orthologous genes in maize, sorghum, and brachypodium and mapped ESTs in barley and wheat. Gene ID corresponds to the last digits of the TIGR rice (prefix LOC_Os04g, www.rice.plantbiology.msu.edu), Maize sequence (prefix GRMZM2G, www.maizesequence.org), Phytozome sorghum (prefix Sb01g, www.phytozome.net), and Brachypodium (prefix Bradi4g, www.brachybase.org) (DOC 81 kb)

Fig. S10

Pairwise DNA sequence alignment of Pusa 1266 and Pusa Basmati 1 at promoter regions of eight differentially expressed genes in the qGN4-1 region of rice (DOC 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshmukh, R., Singh, A., Jain, N. et al. Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genomics 10, 339–347 (2010). https://doi.org/10.1007/s10142-010-0167-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0167-2

Keywords

Navigation