Skip to main content

Advertisement

Log in

Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polymers are crucial constituents of modern electronic devices. They can be used in their pristine, composite or nanocomposite forms for several domestic and industrial applications with innumerable unique possibilities. Polymer nanocomposites have gained wide theoretical interest and numerous practical applications in diverse fields of science and technology as they bestow the materials not only with virtuous processability but also with exceptional functionalities. It is evidenced that the electrical conductance of polymer nanocomposite is governed by the conductive filler networks within the polymer matrix. Hence, insignificant variation in the conductive networks can result in noteworthy variations in the output electric signal of polymer nanocomposite. Exploiting this stimuli-responsive performance of conductive networks to the physical parameters, polymer nanocomposites can be harnessed to fabricate novel sensitive sensors to detect vital physical parameters viz. strain/stress, pressure, temperature, solvent or vapor. Technical and phenomenological studies on polymer nanocomposites are still enduring. Advanced explanations are being sought but the mechanisms governing the formation of several polymer nanocomposites are still topics of debate in the material science community. Their in-depth investigation requires copious scientific work. This review analytically sketches the synthesis, microstructures, physiochemical properties and the underlying mechanisms for stimuli-responsiveness to the physical parameters of the polymer nanocomposites as well as their applications in various sensitive sensors and detectors. Thus, it became evocative for this review to focus on their processing methodologies, physiochemical physiognomies, classification and probable potentials of polymer nanocomposites. This review primarily presents the current literature survey on polymer composites and the gap areas in the study encourages the objective of the present review article. Finally, the status, perspectives and the advantages of specific polymer nanocomposites at present are summarized. The attention of this review is drawn to the present trends, challenges and future scope in this field of study. Finally, the vital concern and future challenge in utilizing the stimulus responsive behavior of polymer nanocomposites to design versatile sensors for real time applications are elaborately discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacDiarmid, A. G. Synthetic metals: a novel role for organic polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590.

    Article  CAS  Google Scholar 

  2. Ramakrishnan, S. Conducting polymers from a laboratory curiosity to the market place. Resonance-J. Sci. Edu. 1991, 2, 48–58.

    Google Scholar 

  3. Schultze, J. W.; Karabulutu, H. Application potential of conducting polymers. Electrochim. Acta 2005, 50, 1739–1745.

    Article  CAS  Google Scholar 

  4. Bakhshi, A. K.; Bhalla, G. Electrically conducting polymers: materials of the twenty first century. J. Scientif. Indust. Res. 2004, 63, 715–728.

    CAS  Google Scholar 

  5. Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436–2440.

    Article  PubMed  CAS  Google Scholar 

  6. Giannelis, E. P.; Krishnamoorti, R.; Manias, E. Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 1999, 138, 107–147.

    Article  CAS  Google Scholar 

  7. Kai, W.; Hirota, Y.; Hua, L.; Inoue, Y. Thermal and mechanical properties of a poly(ε-caprolactone)/graphite oxide composite. J. Appl. Poly. Sci. 2008, 107, 1395–1400.

    Article  CAS  Google Scholar 

  8. Paul, D. R.; Robeson, L. M. Polymer nanotechnology: nanocomposites. Polymer 2008, 49, 3187–3204.

    Article  CAS  Google Scholar 

  9. Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 10, 634–641.

    Article  Google Scholar 

  10. Xue, L.; Dai, S.; Li, Z. Biodegradable shape-memory block copolymers for fast self-expandable stents. Biomaterials 2010, 31, 8132–8140.

    Article  PubMed  CAS  Google Scholar 

  11. Kim, H.; Abdala, A. A.; Macoshko, C. W. Graphene/polymer nanocomposites. Macromolecules 2010, 43, 6515–6530.

    Article  CAS  Google Scholar 

  12. Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene based polymer nanocomposites. Polymer 2011, 52, 5–25.

    Article  CAS  Google Scholar 

  13. Wu, D.; Zhang, F.; Liang, H.; Feng, X. Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets. Chem. Soc. Rev. 2012, 42, 6160–6177.

    Article  Google Scholar 

  14. Layek, R. K.; Nand, A. K. A review on synthesis and properties of polymer functionalized graphene. Polymer 2013, 54, 5087–5103.

    Article  CAS  Google Scholar 

  15. Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 2014, 39, 1934–1972.

    Article  CAS  Google Scholar 

  16. Wang, M.; Duan, X.; Xu, Y.; Duan, X. Functional three-dimensional graphene/polymer composites. ACS Nano 2016, 10, 7231–7247.

    Article  PubMed  CAS  Google Scholar 

  17. Phiri, J.; Gane, P.; Maloney, T. C. General overview of graphene: production, properties and application in polymer composites. Mat. Sci. Eng. B 2017, 215, 9–28.

    Article  CAS  Google Scholar 

  18. Kumar, S. K.; Brian, C.; Benicewicz, R. A.; Vaja Karen, W. 50th Anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 2017, 50, 714–731.

    Article  CAS  Google Scholar 

  19. Huang, J.; Zhu, Y.; Jiang, W.; Tang, Q. Parallel carbon nanotube stripes in polymer thin film with tunable microstructures and anisotropic conductive properties. Compos. Part A: Appl. Sci. Manuf. 2015, 69, 240–246.

    Article  CAS  Google Scholar 

  20. Huang, J.; Zhu, Y.; Jiang, W.; Yin, J.; Tang, Q.; Yang, X. Parallel carbon nanotube stripes in polymer thin film with remarkable conductive anisotropy. ACS Appl. Mater. Interfaces 2014, 6, 1754–1758.

    Article  PubMed  CAS  Google Scholar 

  21. Mao, C.; Huang, J.; Zhu, Y.; Jiang, W.; Tang, Q.; Ma, X. Tailored parallel graphene stripes in plastic film with conductive anisotropy by shear-induced self-assembly. J. Phys. Chem. Lett. 2013, 4, 43–47.

    Article  PubMed  CAS  Google Scholar 

  22. Bovery, F.; Winslow, F.H. Chapter 1-The nature of macromolecules. In Macromolecules-an introduction to polymer science. Bovery, F.; Winslow, F. H. (eds.), Academic Press, 1979, 1–21.

    Google Scholar 

  23. Cervenka, A. Advantages and disadvantages of thermoset and thermoplastic matrices for continuous fibre composites. In Mechanics of composite materials and structures. Soares, C. M. M.; Freitas, M. J. M. (eds) NATO Science Series (Series E: Mathematical and Physical Sciences) 1999, 361, 291–298.

    Google Scholar 

  24. Friedrich, K.; Haupert, F.; Hou, M.; Klinkmuller, V. Fundamental aspects in manufacturing of thermoplastic composite materials In Advanced technology for design and fabrication of composite materials and science. Springer. Sih, G. C.; Carpinteri, A.; Surace, G. (eds) Dordrecht, 1995, 333–348

  25. Mallick, P. Fibre reinforced composites: materials, manufacturing and design. 2nd Edition, Marcel Dekker Inc., New York, 1993.

    Google Scholar 

  26. Yin, Z.; Wu, S.; Zhou, X.; Huang, X.; Zhang, B.; Zhang, H. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 2010, 6, 307–312.

    Article  PubMed  CAS  Google Scholar 

  27. Sankaran, S.; Deshmukh, K.; Ahamed, M. B.; Pasha, S. K. K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A: Appl. Sci. Manuf. 2018, 114, 49–71.

    Article  CAS  Google Scholar 

  28. Chee, W. K., Lim, H. N., Huang, N. M., Harrison, I. Nanocomposites of graphene/polymers: a review. RSC Adv. 2015, 5, 68014–68051.

    Article  CAS  Google Scholar 

  29. Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S. Lee, J. H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375.

    Article  CAS  Google Scholar 

  30. Compton, O. C.; Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 2010, 6, 711–723.

    Article  PubMed  CAS  Google Scholar 

  31. Huang, X.; Yin, Z.; Wu, S.; Qi, X.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902.

    Article  PubMed  CAS  Google Scholar 

  32. Young, R. J.; Kinloch, I. A.; Gong, L.; Novoselov, K. The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol. 2012, 72, 1459–1476.

    Article  CAS  Google Scholar 

  33. Bhattacharya, M. Polymer nanocomposites-a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 2016, 9, 262.

    Article  PubMed Central  Google Scholar 

  34. Yang, M.; Hou, Y.; Kotov, N. A. Graphene-based multilayers: critical evaluation of materials assembly techniques. Nano Today 2012, 7, 430–447.

    Article  CAS  Google Scholar 

  35. Sun, X.; Sun, H.; Li, H.; Peng, H. Developing polymer composite materials: carbon nanotubes or graphene? Adv. Mater. 2013, 25, 5153–5176.

    Article  PubMed  CAS  Google Scholar 

  36. Alam, F. E.; Dai, W.; Yang, M.; Du, S.; Li, X.; Yu, J.; Jiang, N.; Lin, C. T. In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J. Mater. Chem. A 2017, 5, 6164–6169.

    Article  CAS  Google Scholar 

  37. Narimissa, E.; Gupta, R. K.; Bhaskaran, M.; Sriram, S. Influence of nano-graphite platelet concentration on onset of crystalline degradation in polylactide composites. Polym. Deg. Stabil. 2012, 97, 829–832.

    Article  CAS  Google Scholar 

  38. Elham, A.; Masoumeh, G.; Saeed, S. Electrochemical sensing based on carbon nanoparticles: a review. Sensor. Actuat. B 2019, 293, 183–209.

    Article  Google Scholar 

  39. Cui, X.; Sun, S.; Han, B.; Yun, X.; Ouyang, J.; Zeng, S.; Ou, J. Mechanical, thermal and electromagnetic properties of nanographite platelets modified cementitious composites. Compos. Part A: Appl. Sci. Manuf. 2017, 93, 49–58.

    Article  CAS  Google Scholar 

  40. Kubacka, A.; Serrano, C.; Ferrer, M.; Lunsdorf, H.; Bielecki, P.; Cerrada, M. A. L.; Gracia, M. High performance dual action polymer- TiO2 nanocomposite film via melting processing. Nano Lett. 2007, 7, 2529–2534.

    Article  PubMed  CAS  Google Scholar 

  41. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  PubMed  CAS  Google Scholar 

  42. Xia, J.; Chen, F.; Li, J.; Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 2009, 4, 505–509.

    Article  PubMed  CAS  Google Scholar 

  43. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  PubMed  CAS  Google Scholar 

  44. Ajayan, P. M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1799.

    Article  PubMed  CAS  Google Scholar 

  45. Huang, J.; Mao, C.; Zhu, Y.; Jiang, W.; Yang, X. Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon 2014, 73, 267–274.

    Article  CAS  Google Scholar 

  46. Chen, J.; Cui, X.; Zhu, Y.; Jiang, W.; Sui, K. Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π-π interactions and dipole-dipole interactions. Carbon 2017, 114, 441–448.

    Article  CAS  Google Scholar 

  47. Cui, X.; Chen, J.; Zhu, Y.; Jiang, W. Natural sunlight-actuated shape memory materials with reversible shape change and self-healing abilities based on carbon nanotubes filled conductive polymer composites. Chem. Eng. J. 2020, 382, 122823.

    Article  Google Scholar 

  48. Hishiyama, Y.; Kaburagi, Y.; Inagaki, M. Chemistry and physics of carbon. Marcel Dekker Inc. 1991, 23, 2–68.

    Google Scholar 

  49. Fim, F.; Guterres, J. M.; Basso, N. R. S.; Galland, G. B. Polyethylene/graphite nanocomposites obtained by in situ polymerization. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 692.

    Article  CAS  Google Scholar 

  50. Cho, D.; Lee, S.; Yang, G.; Fukushima, H.; Drzal, L. T. Dynamic mechanical and thermal properties of phenylethynyl terminated polyimide composites reinforced with expanded graphite nanoplatelets. Macromol. Mater. Eng. 2005, 290–179.

    Google Scholar 

  51. Sumin, K.; Drzal, L. T. Comparison of exfoliated graphite nanoplatelets (xGnP) and CNTs for Reinforcement of EVA nanocomposites fabricated by solution compounding method and three screw rotating systems. J. Adh. Sci. Technol. 2009, 23, 1623–1638.

    Article  Google Scholar 

  52. Ramanathan, T.; Abdala, A.; Stankovich, S. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.

    Article  PubMed  CAS  Google Scholar 

  53. Xu, D.; Sridhar, V.; Pham, T. T.; Kim, J. K. Dispersion, mechanical and thermal properties of nano graphite platelets reinforced flouro-elastomer composites. e-Polymers 2008, 8, 23.

    Article  Google Scholar 

  54. Chen, J.; Cui, X.; Sui, K.; Zhu. Y.; Jiang, W. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol. 2017, 140, 99–105.

    Article  CAS  Google Scholar 

  55. Tjong, S. C.; Mai, Y. W. Physical properties and applications of polymer nanocomposites. 1st Edition Woodhead Publishing, United Kingdom, 2010.

    Book  Google Scholar 

  56. Alateyah, A. L.; Dhakal, H. N.; Zhang, Z. Y. Processing, properties, and applications of polymer nanocomposites based on layer silicates: a review. Adv. Polym. Technol. 2013, 32, 21368–21403.

    Article  Google Scholar 

  57. Sahu, D.; Sarkar, N.; Mohapatra, P.; Swain, S. K. Nano gold hybrid polyvinyl alcohol films for sensing of Cu2+ ions. Chem. Select 2019, 4, 9784–9793.

    CAS  Google Scholar 

  58. Sahu, D.; Sarkar, N.; Sahoo, G.; Mohapatra, P.; Sarat, S. K. Nano silver imprinted polyvinyl alcohol nanocomposite thin films for Hg2+ sensor. Sensor. Actuat. B: Chem. 2017, 246, 96–107.

    Article  CAS  Google Scholar 

  59. Rueda, M. M.; Auscher, M.; Fulchiron, R.; Perie, T.; Martin, G.; Sonntag, P.; Cassagnau, P. Rheology and applications of highly filled polymers. A review of current understanding. Prog. Polym. Sci. 2017, 66, 22–53.

    Article  CAS  Google Scholar 

  60. Sun, H.; Chiu, Y.; Chen, W. Renewable polymeric materials for electronic applications. Polym. J. 2017, 49, 61–73.

    Article  CAS  Google Scholar 

  61. Das, T. K.; Prusty, S. Graphene-based polymer composites and their applications. Polym. Plast. Technol. Eng. 2013, 52, 319–333.

    Article  CAS  Google Scholar 

  62. Hulanick, A.; Glab, S.; Ingman, F. Chemical sensors definitions and classifications. Pure Appl. Chem. 1991, 63, 1247–1250.

    Article  Google Scholar 

  63. Aswal, D. K.; Gupta, S. K. Science and technology of chemiresistive gas sensor, Nova Science Publishers, New York. 2007, 33–94.

    Google Scholar 

  64. Ramgir, N.; Datta, N.; Kaur, M.; Kailasaganapathi, S.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K. Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloids Surf. A: Physiochem. Eng. Asp. 2013, 439, 101–116.

    Article  CAS  Google Scholar 

  65. Tran, H. D.; Li, D.; Kaner, R. B. 1D conducting polymer nanostructures: one dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv. Mater. 2009, 21, 1487–1499.

    Article  CAS  Google Scholar 

  66. Wang, T.; Huang, D.; Yang, Z. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 2016, 8, 95–119.

    Article  Google Scholar 

  67. Yoon, H.; Xie, J.; Abraham, J. K.; Varadan, V. K.; Ruffin, P. B. An adaptive inverse method of control for a piezoelectric actuator. Smart Mater. Struct. 2006, 15, 14–20.

    Article  Google Scholar 

  68. Grozdanov, A.; Tomova, A.; Dimitrov, A.; Polymer nanocomposite films as a potential Sensor. In Advanced sensors for safety and security. NATO science for peace and security series B: physics and biophysics. Vaseashta A.; Khudaverdyan S. (eds) 2013, 151–162. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-94-007-7003-4_12

  69. An, K. H.; Jeong, S. Y.; Hwang, H. R.; Lee, Y. H. Enhanced sensitivity of a gas sensor incorporating single walled carbon nanotube-polypyrrole nanocomposites. Adv. Mater. 2004, 16, 1005–1009.

    Article  CAS  Google Scholar 

  70. Al-Mashat, L. L.; Shin, K.; Kalantar-Zadeh, K.; Plessis, J. D.; Han, S. H.; Kojima, R. W.; Kaner, R. B.; Li, D.; Gou, X. L.; Ippolito, S. J.; Wlodarski, W. Graphene/polyaniline nanocomposite for hydrogen sensing. Phys. Chem. C 2010, 114, 16168–16173.

    Article  CAS  Google Scholar 

  71. Yu, X.; Zhang, W.; Zhang, P.; Su, Z. Fabrication technologies and sensing applications of graphene-based composite films: advances and challenges. Biosens. Bioelectron. 2017, 89, 72–84.

    Article  PubMed  CAS  Google Scholar 

  72. Chen, J.; Li, H.; Yu, Q.; Hu, Y.; Cui, X.; Zhu, Y.; Jiang, W. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Compos. Sci. Technol. 2018, 168, 388–396.

    Article  CAS  Google Scholar 

  73. Chen, J.; Zhu, Y.; Jiang, W. A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer. Compos. Sci. Technol. 2020, 186, 107938.

    Article  CAS  Google Scholar 

  74. Omar, N. A. S.; Fen, Y. W.; Saleviter, S.; Kamil, Y. M.; Mohd, W.; Mustaqim, E.; Daniyal, M.; Abdullah, J.; Mahdi, M. A. Experimental evaluation on surface plasmon resonance sensor performance based on sensitive hyperbranched polymer nanocomposite thin films. Sensor. Actuat. A: Phys. 2020, 303, 111830.

    Article  CAS  Google Scholar 

  75. Thompson, C. M.; Smith, J. G.; Connell, J. W. Polyimides prepared from 4,4′-(2-diphenylphosphinyl-1,4-phenylenedioxy) diphthalic anhydride for potential space applications. High Perform. Polym. 2003, 15, 181–195.

    Article  CAS  Google Scholar 

  76. Samwel, S. W. Low earth orbital atomic oxygen erosion effect on space craft material. Space Res. J. 2014, 7, 1–13.

    Article  Google Scholar 

  77. Buczala, D. M.; Brunsvold, A. L.; Minton, T. K. Erosion of Kapton H® by hyperthermal atomic oxygen. J. Spacecrafts Rockets 2006, 43, 421–425.

    Article  CAS  Google Scholar 

  78. Wanasinghe, D.; Aslani, F.; Ma, G.; Habibi, D. Review of polymer composites with diverse nanofillers for electromagnetic interference shielding. Nanomater. 2020, 10, 541–586.

    Article  CAS  Google Scholar 

  79. Carpi, F.; Rossi, D. Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials. Optics and Laser Technol 2006, 38, 292–305.

    Article  CAS  Google Scholar 

  80. Plesu, N.; Ilia, G.; Pascariu, A.; Vlase, G. Preparation, degradation of polyaniline doped with organic phosphorus acids and corrosion essays of polyaniline-acrylic blends. Synth. Metals 2006, 156, 230–238.

    Article  CAS  Google Scholar 

  81. Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based super capacitor devices and electrodes. J. Power Sources 2011, 196, 1.

    Article  CAS  Google Scholar 

  82. Rong, A. M.; Zhang, M.; Ruan, W. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review. Mater. Sci. Technol. 2006, 22, 787–796.

    Article  CAS  Google Scholar 

  83. Sree, U. B.; Yamamoto, Y.; Deore, B.; Shugi, H.; Nagaoka, T. Characterization of polypyrrole nanofilms for membrane based sensors. Synth. Met. 2002, 131, 161–165.

    Article  CAS  Google Scholar 

  84. Wang, J.; Bunimovich, Y. L.; Sui, G.; Savvas, S.; Wang, J.; Guo, Y. Electrochemical fabrication of conducting polymer nanowires in an integrated micro fluidic system. Chem. Commun. 2006, 3075–3077.

    Google Scholar 

  85. Ma, Y.; Zhang, J.; Zhang, G.; He, H. Polyaniline nanowires on Si surfaces fabricated with DNA templates. J. Am. Chem. Soc. 2004, 126, 7097–7101.

    Article  PubMed  CAS  Google Scholar 

  86. Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 2008, R 28, 1–63.

    Google Scholar 

  87. Ray, S. S.; Okamoto, M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641.

    Article  CAS  Google Scholar 

  88. Buryachenko, V. A.; Roy, A.; Lafdi, K.; Anderson, K. L.; Chellapilla, S. Multi-scale mechanics of nanocomposites including interface: experimental and numerical investigation. Compos. Sci. Technol. 2005, 65, 2435–2465.

    Article  CAS  Google Scholar 

  89. Xie, X. L.; Mai, Y. W.; Zhou, X. P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. 2005, R 49, 89–112.

    Article  CAS  Google Scholar 

  90. Luo, Y.; Zhang, Y.; Zhao, Y.; Fang, X.; Ren, J.; Weng, W.; Jiang, Y.; Sun, H.; Wang, B.; Cheng, X. and Peng, H. Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. J. Mater. Chem. A 2015, 3, 17553–17557.

    Article  CAS  Google Scholar 

  91. Feynman, R. P.; There’s plenty of room at the bottom[1959]. J. Microelectromechanical Systems 1992, 1, 60–66. https://resolver.caltech.edu/CaltechES:23.5.1960Bottom.

    Article  Google Scholar 

  92. David, A. J.; John, F. W. The Interface and Interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym. Rev. 2012, 52, 321–354.

    Article  Google Scholar 

  93. Li, S.; Qin, J.; Fornara, A.; Toprak, M.; Muhammed, M.; Kim, D. K. Synthesis and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites. Nanotechnology 2009, 20, 185607.

    Article  PubMed  Google Scholar 

  94. Wu, Y.; Jia, P.; Xu, L.; Chen, Z.; Xiao, L.; Sun, J.; Zhang, J.; Huang, Y.; Bielawski, C. W.; Geng, J. Tuning the surface properties of graphene oxide by surface-initiated polymerization of epoxides: an efficient method for enhancing gas separation. ACS Appl. Mater. Interfaces 2017, 9, 4998–5005.

    Article  PubMed  CAS  Google Scholar 

  95. Chen, X.; Huang, H.; Shu, X.; Liu, S.; Zhao, J. Preparation and properties of a novel graphene fluoroxide/polyimide nanocomposite film with a low dielectric constant. RSC Adv. 2017, 7, 1956–1965.

    Article  CAS  Google Scholar 

  96. Sharma, M.; Gao, S.; Mader, E.; Sharma, H.; Wei, L. Y.; Bijwe, J. Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 2014, 102, 35–50.

    Article  CAS  Google Scholar 

  97. Karger-Kocsis, J.; Mahmood, H.; Pegoretti, A. Recent advances in fiber/matrix interphase engineering for polymer composites. Prog. Mat. Sci. 2015, 73, 1–43.

    Article  CAS  Google Scholar 

  98. Salvetat, J. P.; Briggs, A. D.; Bonard, J. M.; Bacsa, R. R.; Kulik, A. J.; Stockli, T.; Burnham, N. A.; Forro, L. A. Elastic and shear moduli of single-walled carbon nanotube ropes. Phy. Rev. Lett. 1999, 82, 944–947.

    Article  CAS  Google Scholar 

  99. Zhang, Y. Q.; Lee, J. H.; Jang, H. J.; Nah, C. W. Preparing PP/clay nanocomposites using a swelling agent. Compos. Part B: Eng. 2004, 35, 133–138.

    Article  Google Scholar 

  100. Supova, M.; Martynkova, G. S.; Barabaszova, K. Effect of nanofillers dispersion in polymer matrices: a review. Sci. Adv. Mat. 2011, 3, 1–25.

    Article  CAS  Google Scholar 

  101. Needleman, A.; Borders, T. L.; Brinson, L. C. Effect of an interphase region on debonding of a CNT reinforced polymer composite. Compos. Sci. Technol. 2010, 70, 2207–2215.

    Article  CAS  Google Scholar 

  102. Safaei, M.; Sheidaei, A.; Baniassadi, M. An interfacial debonding-induced damage model for graphite nanoplatelet polymer composites. Comput. Mater. Sci. 2015, 96, 191–199.

    Article  CAS  Google Scholar 

  103. Liu, H.; Brinson, L. C. Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites. Compos. Sci. Technol. 2008, 68, 1502–1512.

    Article  CAS  Google Scholar 

  104. Balberg, I. Recent developments in continuum percolation. Philos. Mag. Part B 1987, 56, 991–1003.

    Article  CAS  Google Scholar 

  105. Kruckel, J.; Stary, Z.; Triebel, C.; Schubert, D. W.; Munstedt, H. Conductivity of polymethylmethacrylate filled with carbon black or carbon fibres under oscillatory shear. Polymer 2012, 53, 395–402.

    Article  Google Scholar 

  106. Mutiso, R. M.; Winey, K. I. Electrical properties of polymer nanocomposites containing rod-like nanofillers. Prog. Polym. Sci. 2015, 40, 63–84.

    Article  CAS  Google Scholar 

  107. Alig, I.; Potschke, P.; Lellinger, D.; Skipa, T.; Pegel, S.; Kasaliwal, G. R.; Villmow, T. Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 2012, 53, 4–28.

    Article  CAS  Google Scholar 

  108. Bauhofer, W.; Kovacs, J. Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498.

    Article  CAS  Google Scholar 

  109. Zeng, Y.; Liu, P.; Du, J.; Zhao, L.; Ajayan, P. M.; Cheng, H. M. Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube-polymer interactions. Carbon 2010, 48, 3551–3558.

    Article  CAS  Google Scholar 

  110. Bréchet, Y.; Cavaillé, J. Y.; Chabert, E.; Chazeau, L.; Dendievel, R.; Flandin, L.; Gauthier, C. Polymer based nanocomposites: effect of filler-filler and filler-matrix interactions. Adv. Eng. Mater. 2001, 3, 571.

    Article  Google Scholar 

  111. Ma, H. M.; Gao, X. L. A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers. Polymer 2008, 49, 4230–4238.

    Article  CAS  Google Scholar 

  112. Bao, W. S.; Meguid, S. A.; Zhu, Z. H.; Pan, Y.; Weng, G. J. A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mech. Mater. 2012, 46, 129–138.

    Article  Google Scholar 

  113. Lu, W.; Chou, T. W.; Thostenson, E. T. A three-dimensional model of electrical percolation thresholds in carbon nanotube-based composites. Appl. Phys. Lett. 2010, 96, 223106.

    Article  Google Scholar 

  114. Li, C.; Thostenson, E. T.; Chou, T. W. Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos. Sci. Technol. 2008, 68, 1445–1452.

    Article  CAS  Google Scholar 

  115. Chen, Y.; Wang, S.; Pan, F.; Zhang, J. A numerical study on electrical percolation of polymer-matrix composites with hubrid fillers of carbon nanotubes and carbon black. J. Nanomater. 2014, 9, 614797–614806.

    Google Scholar 

  116. Gong, S.; Zhu, Z. H.; Meguid, S. A. Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes. Polymer 2015, 56, 498–506.

    Article  CAS  Google Scholar 

  117. Cho, H. W.; Nam, S.; Lim, S.; Kim, D.; Kim, H.; Sung, B. J. Effects of size and interparticle interaction of silica nanoparticles on dispersion and electrical conductivity of silver/epoxy nanocomposites. J. Appl. Phys. 2014, 115, 154307.

    Article  Google Scholar 

  118. Feng, Y.; Ning, N.; Zhang, L.; Tian, M.; Zou, H.; Mi, J. Evolution of conductive network and properties of nanorod/polymer composite under tensile strain. J. Chem. Phys. 2013, 139, 024903.

    Article  PubMed  Google Scholar 

  119. Cho, H. W.; Kim, S. W.; Kim, J.; Kim, U. J.; Im, K.; Park, J. J.; Sung, B. J. Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation. J. Chem. Phys. 2016, 144, 194903.

    Article  PubMed  Google Scholar 

  120. Ambrosetti, G.; Grimaldi, C.; Balberg, I.; Maeder, T.; Danani, A.; Ryser, A. Solution of the tunneling-percolation problem in the nanocomposite regime. Phys. Rev. B 2010, 81, 155434.

    Article  Google Scholar 

  121. Ambrosetti, G.; Johner, N.; Grimaldi, C.; Maeder, T.; Ryser, P.; and Danani, P. Electron tunneling in conductor-insulator composites with spherical fillers. J. Appl. Phys. 2009, 106, 016103.

    Article  Google Scholar 

  122. Ambrosetti, G.; Johner, N.; Grimaldi, C.; Danani, A.; and Ryser, P. Percolative properties of hard oblate ellipsoids of revolution with a soft shell. Phys. Rev. E 2008, 78, 061126.

    Article  Google Scholar 

  123. Chatterjee, A. P. Connectedness percolation in polydisperse rod systems: a modified Bethe lattice approach. J. Chem. Phys. 2010, 132, 224905.

    Article  PubMed  Google Scholar 

  124. Chatterjee, A. P. Connectedness percolation in monodisperse rod systems: clustering effects. J. Phys.: Condens. Matter 2011, 23, 375101.

    Google Scholar 

  125. Chatterjee, A. P. Geometric percolation in polydisperse systems of finite-diameter rods: effects due to particle clustering and inter-particle correlations. J. Chem. Phys. 2012, 137, 134903.

    Article  PubMed  Google Scholar 

  126. Chatterjee, A. P. A percolation-based model for the conductivity of nanofiber composites. J. Chem. Phys. 2013, 139, 224904.

    Article  PubMed  Google Scholar 

  127. Chatterjee, A. P. A lattice-based approach to percolation in penetrable sphere systems. J. Stat. Phys. 2014, 156, 586–592.

    Article  Google Scholar 

  128. Chatterjee, A. P. Percolation in polydisperse systems of aligned rods: a lattice-based analysis. J. Chem. Phys. 2014, 140, 204911.

    Article  PubMed  Google Scholar 

  129. Chatterjee, A. P. Percolation thresholds for polydisperse circular disks: A lattice-based exploration. J. Chem. Phys. 2014, 141, 034903.

    Article  PubMed  Google Scholar 

  130. Chatterjee, A. P. A lattice model for connectedness percolation in mixtures of rods and disks. J. Phys.: Condens. Matter. 2015, 27, 315303.

    Google Scholar 

  131. Chatterjee, A. P. Connectedness percolation in isotropic systems of monodisperse spherocylinders. J. Phys.: Condens. Matter 2015, 27, 375302.

    Google Scholar 

  132. Kyrylyuk, A. V.; Schoot, P. V. Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc. Natl. Acad. Sci. 2008, 105, 8221.

    Article  PubMed  CAS  Google Scholar 

  133. Kyrylyuk, A., Hermant, M., Schilling, T. Controlling electrical percolation in multicomponent carbon nanotube dispersions. Nat. Nanotechnol. 2011, 6, 364–369.

    Article  PubMed  CAS  Google Scholar 

  134. Otten, R. H.; Schoot, P. V. Continuum percolation of polydisperse nanofillers. Phys. Rev. Lett. 2009, 103, 225704.

    Article  PubMed  Google Scholar 

  135. Otten, R. H.; Schoot, P. V. Connectivity percolation of polydisperse anisotropic nanofillers. J. Chem. Phys. 2011, 134, 094902.

    Article  PubMed  Google Scholar 

  136. Nigro, B.; Grimaldi, C. Impact of tunneling anisotropy on the conductivity of nanorod dispersions. Phys. Rev. B 2014, 90, 094202.

    Article  Google Scholar 

  137. Gangopadhyay, R.; De, A. Conducting polymer nanocomposites: a brief overview. Chem. Mater. 2000, 12, 608–622.

    Article  CAS  Google Scholar 

  138. Mutiso, R. M.; Sherrott, M. C.; Li, J.; Winey, K. I. Simulations and generalized model of the effect of filler size dispersity on electrical percolation in rod networks. Phys. Rev. B 2012, 86, 214306.

    Article  Google Scholar 

  139. White, S. I.; Di Donna, B. A.; Mu, M.; Lubensky, T. C.; Winey, K. I. Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys. Rev. B 2009, 79, 024301.

    Article  Google Scholar 

  140. Rahatekar, S. S.; Hamm, M.; Shaffer, S. P.; Elliott, J. A. Mesoscale modeling of electrical percolation in fiber-filled systems. J. Chem. Phys. 2005, 123, 134702.

    Article  PubMed  Google Scholar 

  141. Chatterjee, A. P.; Grimaldi, C. Random geometric graph description of connectedness percolation in rod systems. Phys. Rev. E 2015, 92, 032121.

    Article  Google Scholar 

  142. Chatterjee, A. P.; Grimaldi, C. Tunneling conductivity in anisotropic nanofiber composites: a percolation-based model. J. Phys.: Condens. Matter 2015, 27, 145302.

    Google Scholar 

  143. Du, F.; Fischer, J. E.; Winey, K. I. Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys. Rev. B 2005, 72, 121404.

    Article  Google Scholar 

  144. Behnam, A.; Guo, J.; Ural, A. Effects of nanotube alignment and measurement direction on percolation resistivity in singlewalled carbon nanotube films. J. Appl. Phys. 2007, 102, 044313.

    Article  Google Scholar 

  145. Zeng, X.; Xu, X.; Shenai, P. M.; Kovalev, E.; Baudot, C.; Mathews, N.; Zhao, Y. Characteristics of the Electrical Percolation in Carbon Nanotubes/Polymer Nanocomposites. J. Phys. Chem. C 2011, 115, 21685–90.

    Article  CAS  Google Scholar 

  146. Silva, J.; Ribeiro, S.; Lanceros-Mendez, S.; Simoes, R. The influence of matrix mediated hopping conductivity, filler concentration, aspect ratio and orientation on the electrical response of carbon nanotube/polymer nanocomposites. Compos. Sci. Technol. 2011, 71, 643.

    Article  CAS  Google Scholar 

  147. Balberg, I.; Anderson, C. H.; Alexander, S.; Wagner, N. Excluded volume and its relation to the onset of percolation. Phys. Rev. B. 1984, 30, 3933.

    Article  Google Scholar 

  148. Guo, Z.; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 2017, 3, 348–362.

    Article  CAS  Google Scholar 

  149. Chen, X; Sun, H.; Yang, Z.; Guan, G.; Zhang, Z.; Qiu, L.; Peng, H. A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. J. Mater. Chem. A 2014, 2(6), 1897–1902.

    Article  CAS  Google Scholar 

  150. Peng, H., Sun, X., Cai, F. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat. Nanotechnol. 2009, 4, 738–741.

    Article  PubMed  CAS  Google Scholar 

  151. Shen, J.; Han, X.; Lee, L. J. Nanoscaled reinforcement of polystyrene foams using carbon nanofibers. J. Cell Plast. 2006, 42, 105–126.

    Article  CAS  Google Scholar 

  152. Qian, D.; Dickney, E. C.; Andrews, R.; Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 2000, 76, 2868–2870.

    Article  CAS  Google Scholar 

  153. Chae, D. W.; Kim, B. C. Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym. Adv. Technol. 2006, 16, 846–850.

    Article  Google Scholar 

  154. Shen, J. W.; Huang, W. Y.; Zuo, S. W.; Hou, J. Polyethylene/grafted polyethylene/graphite nanocomposites: Preparation, structure, and electrical properties. J. Appl. Polym. Sci. 2005, 97, 51–59.

    Article  CAS  Google Scholar 

  155. Raravikar, N. R.; Schadler, L. S.; Vijayaraghavan, A.; Zhao, Y. P.; Wei, B. Q.; Ajayan, P. M. Synthesis and characterization of thickness-aligned carbon nanotube-polymer composite films. Chem. Mater. 2005, 17, 974–983.

    Article  CAS  Google Scholar 

  156. Jia, Z.; Wang, Z.; Xu, C.; Liang, J.; Wei, B.; Wu, D.; Zhu, S. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng. A 1999, 27, 395–400.

    Article  Google Scholar 

  157. Huang, C.; Cheng, Q. Learning from nacre: Constructing polymer nanocomposites. Compos. Sci. Technol. 2017, 150, 141–166.

    Article  CAS  Google Scholar 

  158. Li, S.; Toprak, M. S.; Jo, Y. S.; Dobson, J.; Kim, D. K.; Muhammed, M. Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Adv. Mater. 2007, 19, 4347–52.

    Article  CAS  Google Scholar 

  159. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599.

    Article  CAS  Google Scholar 

  160. Siemsen, P.; Livingston, R. C.; Diederich, F. Acetylenic coupling: a powerful tool in molecular construction. Angew. Chem. Int. Ed. 2000, 39, 2632–2657.

    Article  CAS  Google Scholar 

  161. Jean-François, L.; Börner, H. G.; Weichenhan, K. Combining ATRP and “click” chemistry: a promising platform toward functional biocompatible polymers and polymer bioconjugates. Macromolecules 2006, 39, 6376–6383.

    Article  Google Scholar 

  162. Binder, W. H.; Sachsenhofer, R. ‘Click’ chemistry in polymer and materials science. Macromol. Rapid Commun. 2007, 28, 15–54.

    Article  CAS  Google Scholar 

  163. Xi, W.; Scott, T. F.; Kloxin, C. J.; Browman, C. N. Click chemistry in materials science. Adv. Funct. Mater. 2014, 24, 2572–2590.

    Article  CAS  Google Scholar 

  164. Castelain, M.; Martinez, G.; Marcos, C.; Eliis, G.; Salavagione, H. J. Effect of click-chemistry approaches for graphene modification on the electrical, thermal, and mechanical properties of polyethylene/graphene nanocomposites. Mocromolecules 2013, 46, 8980–8987.

    Article  CAS  Google Scholar 

  165. Salavagione, H. J.; Díaz, S. Q.; Jimenez, P. E.; Martínez, G.; Ania, F.; Flores, A.; Gómez-Fatou, M. A. Development of advanced elastomeric conductive nanocomposites by selective chemical affinity of modified graphene. Macromolecules 2016, 49, 4948–4956.

    Article  CAS  Google Scholar 

  166. Kashiwagi, T.; Du, F.; Douglas, J. F.; Winey, K. I.; Harris, R. H. Jr.; Shields, J. R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 2005, 4, 928–933.

    Article  PubMed  CAS  Google Scholar 

  167. May, P.; Khan, U.; O’Neill, A.; Coleman, J. N. Approaching the theoretical limit for reinforcing polymers with graphene. J. Mater. Chem. 2012, 22, 1278–1282.

    Article  CAS  Google Scholar 

  168. Grimmer, C. S.; Dharan, C. K. H. High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites. J. Mater. Sci. 2008, 43, 4487–4492.

    Article  CAS  Google Scholar 

  169. Kim, K. T.; Jo, W. H. Non-destructive functionalization of multi-walled carbon nanotubes with naphthalene-containing polymer for Nylon66/multi-walled carbon nanotube composites. Carbon 2011, 49, 819–826.

    Article  CAS  Google Scholar 

  170. Yuan, W.; Chan-Park, M. B. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film. ACS Appl. Mater. Interfaces 2012, 4, 2065–2073.

    Article  PubMed  CAS  Google Scholar 

  171. Coleman, J. N.; Cadek, M.; Blake, R.; Nicolosi, V.; Ryan, K. P.; Belton, C.; Fonseca, A.; Nagy, J. B.; Gun’ko, Y. K.; Blau, W. J. High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv. Funct. Mater. 2004, 14, 791–798.

    Article  CAS  Google Scholar 

  172. Aoyama, S.; Park, Y. T.; Ougizawa, T.; Macosko, C. W. Melt crystallization of poly(ethylene terephthalate): comparing addition of graphene vs. carbon nanotubes. Polymer 2014, 55, 2077–2085.

    Article  CAS  Google Scholar 

  173. Calcagno, C. I. W.; Mariani, C. M.; Teixeira, S. R.; Mauler, R. S. The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 2007, 48, 966–974.

    Article  CAS  Google Scholar 

  174. Liao, K. H.; Aoyama, S.; Abdala, A. A.; Macosko, C. W. Does graphene change Tg of nanocomposites? Macromolecules 2014, 47, 8311–8319.

    Article  CAS  Google Scholar 

  175. Chou, C. C.; McAtee, J. L. Decomposition of alkylammonium cations adsorbed on vermiculite under ambient conditions. Clay and Clay Miner 1969, 17, 339–346.

    Article  CAS  Google Scholar 

  176. Xie, W.; Gao, Z.; Pan, W.P.; Hunter, D.; Singh, A.; Vaia, R. Thermal degradation chemistry of alkyl quaternary ammonium Montmorillonite. Chem. Mater. 2001, 13, 2979–2990.

    Article  CAS  Google Scholar 

  177. Yufeng Wang, A.; Tebyetekerwa, M.; Liu, Y.; Wang, M.; Zhu, J.; Xu, J.; Zhang, C.; Liu, T. Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chem. Eng. J. 2020, 127637.

    Google Scholar 

  178. Li, L. B.; Zhang, Y.; Lu, H. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 2020, 11, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kumar, S.; Sarita, N. M.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.H. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog. Polym. Sci. 2018, 80, 1–38.

    Article  CAS  Google Scholar 

  180. McClory, C.; Chin, S. J.; McNally, T. Polymer/carbon nanotube composites. Aust. J. Chem. 2009, 62, 762–785.

    Article  CAS  Google Scholar 

  181. Wang, Y.; Shan, J. W.; Weng, G. J. Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunnelling. J. Appl. Phys. 2015, 118, 065101.

    Article  Google Scholar 

  182. Smith, A. T.; LaChance, A. M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31–47.

    Article  Google Scholar 

  183. Nanostructured and Amorphous Materials Incorporated. Available online: http://www.nanoamor.com (accessed on 6 December 2015).

  184. Cheap Tubes. Available online: http://www.cheaptubes.com/ (accessed on 6 December 2015).

  185. Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A review of the synthesis and applications of polymer-nanoclay composites. Appl. Sci. 2018, 8, 1696.

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Ashok K. Chauhan, founder president, Amity University, for his continuous support and encouragement. Authors would also like to thank other members of the AIARS (M&D) group, Amity University, Noida for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Shukla.

Additional information

Biography

Dr. Prashant Shukla is working as an Assistant Professor (Grade III) in AIARS(M&D) & AIRAE, Amity University, Sector-125, Noida-201303 (U.P.), INDIA. He completed B.Sc (Hons.) in Physics in 2002 and received his M.Sc. degree in Physics (specialization in electronics) in 2004 from Dayalbagh Educational Institute (Deemed University), Agra (U.P.). He received his PhD (2012) in Physics from Uttar Pradesh Technical University, Lucknow. His research interest includes electroactive properties of polymer nanocomposites, development of electroactive polymers for sensor applications, electret thermal analysis (ETA) of Polymers, CNT/polymer nano-composite based gas sensors, carbon compounds and graphene based nano-composites for gas sensing applications and sustainable energy storage devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P., Saxena, P. Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope. Chin J Polym Sci 39, 665–691 (2021). https://doi.org/10.1007/s10118-021-2553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2553-8

Keywords

Navigation