Skip to main content
Log in

Methylenetetrahydrofolate reductase C677T polymorphism and susceptibility to epilepsy

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism was reported as risk factor for multiple diseases due to its role in conversion of homocysteine to methionine. The aim of the present meta-analysis was to find out the validity of association of C677T polymorphism with epilepsy susceptibility.

Methods

Pubmed, Science Direct, Springer Link and Google Scholar, databases were searched for relevant studies up to January, 31, 2018. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were performed using five genetic models. All statistical analysis was done by MetaAnalyst and Mix programs.

Results

Except recessive model, significant association was found between MTHFR C677T polymorphism and epilepsy risk in other four genetic models (T vs C: OR = 1.29, 95% CI = 1.08–1.52, p = 0.004; TT vs CC: OR = 1.48, 95% CI = 1.19–1.82, p = 0.0003; TT + CT vs CC: OR = 1.20, 95% CI = 1.05–1.38, p = 0.008; TT vs CT + CC: OR = 1.35, 95% CI = 1.11–1.62, p = 0.002). Similarly, in the subgroup analysis based on ethnicity, significant association was found in Asian (T vs C: OR = 1.85; 95% CI = 1.15–2.99; p = 0.03) and Caucasian populations (TT vs CC: OR = 1.38; 95% CI = 1.10–1.1.73; p = 0.005). No evidence of heterogeneity and publication bias was detected in present meta-analysis.

Conclusion

In conclusion, results of present meta-analysis suggested that 677T allele of MTHFR is significantly increases the epilepsy susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Apeland T, Mansoor MA, Pentieva K, McNulty H, Strandjord RE (2003) Fasting and post-methionine loading concentrations of homocysteine, vitamin B2, and vitamin B6 in patients on antiepileptic drugs. Clin Chem 49:1005–1008

    Article  CAS  PubMed  Google Scholar 

  2. Avoli M, D’Antuono M, Louvel J, Köhling R, Biagini G, Pumain R, D’Arcangelo G, Tancredi V (2002) Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog Neurobiol 68(3):167–207

    Article  CAS  PubMed  Google Scholar 

  3. Bagos PG (2009) Plasminogen activator inhibitor-1 4G/5G and 5,10-methylenetetrahydrofolate reductase C677T polymorphisms in polycystic ovary syndrome. Mol Hum Reprod 15:19–26

    Article  CAS  PubMed  Google Scholar 

  4. Balamuralikrishnan B, Balachandar V, Mohana Devi S, Karthic Kumar A, Mustaq Ahammed SAK, Sasikala K (2013) Cytogenetic evaluation in epilepsy patients correlated with MTHFR C677T gene mutation and frequency of homocysteine levels. WCN 333:e44–e45. https://doi.org/10.1016/j.jns.2013.07.161

    Article  Google Scholar 

  5. Baldelli E, Leo G, Andreoli N, Fuxe K, Biagini G, Agnati LF (2010) Homocysteine potentiates seizures and cell loss induced by pilocarpine treatment. NeuroMolecular Med 12(3):248–259

    Article  CAS  PubMed  Google Scholar 

  6. Banerjee PN, Filippi D, Allen Hauser W (2009) The descriptive epidemiology of epilepsy-a review. Epilepsy Res 85(1):31–45

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bax L, Yu LM, Ikeda N, Tsuruta H, Moons KG (2006) Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol 6:50

    Article  PubMed  PubMed Central  Google Scholar 

  8. Belcastro V, Gorgone G, Italiano D, Oteri G, Caccamo D, Pisani LR et al (2007) Antiepileptic drugs and MTHFR polymorphisms influence hyper-homocysteinemia recurrence in epileptic patients. Epilepsia 48:1990–1994

    Article  CAS  PubMed  Google Scholar 

  9. Belcastro V, Striano P, Gorgone G, Costa C, Ciampa C, Caccamo D, Pisani LR, Oteri G, Marciani MG, Aguglia U, Striano S, Ientile R, Calabresi P, Pisani F (2010) Hyperhomocysteinemia in epileptic patients on new antiepileptic drugs. Epilepsia 51:274–279

    Article  CAS  PubMed  Google Scholar 

  10. Caccamo D, Condello S, Gorgone G, Crisafulli G, Belcastro V, Gennaro S, Striano P, Pisani F, Ientile R (2004) Screening for C677T and A1298C MTHFR polymorphisms in patients with epilepsy and risk of hyperhomocysteinemia. NeuroMolecular Med 6:117–126

    Article  CAS  PubMed  Google Scholar 

  11. Cronin S, Furie KL, Kelly PJ (2005) Dose-related association of MTHFR 677T allele with risk of ischemic stroke: evidence from a cumulative meta-analysis. Stroke 36:1581–1587

    Article  CAS  PubMed  Google Scholar 

  12. Curia G, Lucchi C, Vinet J, Gualtieri F, Marinelli C, Torsello A, Costantino L, Biagini G (2014) Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 21(6):663–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dean JC, Robertson Z, Reid V, Wang Q, Hailey H, Moore S et al (2008) A high frequency of the MTHFR 677C > T polymorphism in Scottish women with epilepsy: possible role in pathogenesis. Seizure 17:269–275

    Article  CAS  PubMed  Google Scholar 

  14. den Heijer T, Vermeer SE, Clarke R, Oudkerk M, Koudstaal PJ, Hofman A, Breteler MMB (2003) Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 126:170–175

    Article  Google Scholar 

  15. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  16. Diaz-Arrastia R (2000) Homocysteine and neurologic disease. Arch Neurol 57:1422–1427

    CAS  PubMed  Google Scholar 

  17. Duncan JS, Sander JW, Sisodiya SM, Walker MC (2006) Adult epilepsy. Lancet 367:1087–1100

    Article  PubMed  Google Scholar 

  18. Egger M, Smith DJ, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Engel J (2001) A proposed diagnostic scheme for people with epileptic seizures and epilepsy: report of the ILEA task force on classification and terminology. Epilepsia 42:796–803

    Article  PubMed  Google Scholar 

  20. Flott-Rahmel B, Schurmann M, Schluff P, Fingerhut R, Musshoff U, Fowler B et al (1998) Homocysteic and homocysteine sulphinic acid exhibit excitotoxicity in organotypic cultures from rat brain. Eur J Pediatr 157(2):112–117

    Article  Google Scholar 

  21. Folbergrova J (1997) Anticonvulsant action of both NMDA and non-NMDA receptor antagonists against seizures induced by homocysteine in immature rats. Exp Neurol 145:442–450

    Article  CAS  PubMed  Google Scholar 

  22. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJH, den Heijer M, Kluijtmans LAJ, van den Heuve LP, Rozen R (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  23. Gorgone G, Caccamo D, Pisani LR, Curro M, Parisi G, Oteri G et al (2009) Hyperho-mocysteinemia in patients with epilepsy: does it play a role in the pathogenesis of brain atrophy? A preliminary report. Epilepsia 50:33–36

    Article  CAS  PubMed  Google Scholar 

  24. Hegele RA, Tully C, Young TK, Connelly PW (1997) V677 mutation of methylenetetrahydrofolate reductases and cardiovascular disease in Canadian Inuit. Lancet 34:1221–1222

    Article  Google Scholar 

  25. Herrmann W, Herrmann M, Obeid R (2007) Hyperhomocysteinaemia: a critical review of old and new aspects. Curr Drug Metab 8:17–31

    Article  CAS  PubMed  Google Scholar 

  26. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  27. Huemer M, Ausserer B, Graninger G, Hubmann M, Huemer C, Schlachter K (2005) Hyperhomocysteinemia in children treated with antiepileptic drugs is normalized by folic acid supplementation. Epilepsia 46:1677–1683

    Article  CAS  PubMed  Google Scholar 

  28. Johnson MR, Sander JWAS (2001) The clinical impact of epilepsy genetics. J Neurol Neurosurg Psychiatry 70:428–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karabiber H, Sonmezgoz E, Ozerol E, Yakinci C, Otlu B, Yologlu S (2003) Effects of valproate and carbamazepine on serum levels of homocysteine, vitamin B12,and folic acid. Brain and Development 25:113–115

    Article  PubMed  Google Scholar 

  30. Kini U, Lee R, Jones A, Smith S, Ramsden S, Fryer A, Clayton-Smith J (2007) Influence of the MTHFR genotype on the rate of malformations following exposure to antiepileptic drugs in utero. Eur J Med Genet 50:411–420

    Article  PubMed  Google Scholar 

  31. Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kubova H, Folbergrova J, Mares P (1995) Seizures induced by homocysteine in rats during ontogenesis. Epilepsia 36:750–756

    Article  CAS  PubMed  Google Scholar 

  33. Kumar P, Yadav U, Rai V (2016) Methylenetetrahydrofolate reductase gene C677T polymorphism and breast cancer risk: evidence for genetic susceptibility. Meta Gene 6:2–84

    Google Scholar 

  34. Kwan P, Brodie MJ (2001) Neuropsychological effects of epilepsy and antiepileptic drugs. Lancet 357:216–222

    Article  CAS  PubMed  Google Scholar 

  35. Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV et al (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 94(11):5923–5928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748

    CAS  PubMed  Google Scholar 

  37. Marangos PJ, Loftus T, Wiesner J, Lowe T, Rossi E, Browne CE, Gruber HE (1990) Adenosinergic modulation of homocysteine-induced seizures in mice. Epilepsia 31(3):239–246

    Article  CAS  PubMed  Google Scholar 

  38. Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146

    Article  CAS  PubMed  Google Scholar 

  39. Munisamy M, Al-Gahtany M, Tripathi M, Subbiah (2015) Impact of MTHFR (C677T) gene polymorphism on antiepileptic drug monotherapy in North Indian epileptic population. Ann Saudi Med 35(1):51–57

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ono H, Sakamoto A, Mizoguchi N, Sakura N (2000) Methylenetetrahydrofolate reductase 677C>T and epilepsy. J Inherit Metab Dis 23:525–526

    Article  CAS  PubMed  Google Scholar 

  41. Pepe G, Camacho Vanegas O, Giusti B, Brunelli T, Marcucci R, Attanasio M, Rickards O, de Stefano GF, Prisco D, Gensini GF, Abbate R (1998) Heterogeneity in world distribution of the thermolabile C677T mutation in 5,10-methylenetetrahydrofolate reductase. Am J Hum Genet 63:917–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rai V (2011a) Polymorphism in folate metabolic pathway gene as maternal risk factor for down syndrome. Int J Biol Med Res 2(4):1055–1060

    Google Scholar 

  43. Rai V (2011b) Evaluation of methylenetetrahydrofolate reductase gene variant (C677T) as risk factor for bipolar disorder. Cell Mol Biol 57:1558–1566

    Google Scholar 

  44. Rai V (2014a) Methylenetetrahydrofolate reductase A1298C polymorphism and breast cancer risk: a meta-analysis of 33 studies. Ann Med Health Sci Res 4(6):841–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rai V (2014b) Genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene and susceptibility to depression in Asian population: a systematic meta-analysis. Cell Mol Biol 60(3):29–36

    CAS  PubMed  Google Scholar 

  46. Rai V (2016a) Methylenetetrahydrofolate reductase C677T polymorphism and recurrent pregnancy loss risk in Asian population: a meta-analysis. Ind J Clin Biochem 31:402–413

    Article  CAS  Google Scholar 

  47. Rai V (2016b) Evaluation of the MTHFR C677T polymorphism as a risk factor for colorectal cancer in Asian populations. Asian Pac J Cancer Prev 16(18):8093–8100

    Article  Google Scholar 

  48. Rai V (2016c) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and Alzheimer disease risk: a meta-analysis. Mol Neurobiol 54(2):1173–1186

    Article  PubMed  CAS  Google Scholar 

  49. Rai V (2016d) Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab Brain Dis 31:727–735

    Article  CAS  PubMed  Google Scholar 

  50. Rai V (2017) Strong association of C677T polymorphism of methylenetetrahydrofolate reductase gene with nosyndromic cleft lip/palate (nsCL/P). Ind J Clin Biochem 33(1):5–15

    Article  CAS  Google Scholar 

  51. Rai V, Kumar P (2017) Methylenetetrahydrofolate reductase C677T polymorphism and risk of male infertility in Asian population. Ind J Clin Biochem 32(3):253–226

    Article  CAS  Google Scholar 

  52. Rai V, Yadav U, Kumar P, Yadav SK (2010) Methylenetetrahydrofolate reductase polymorphism (C677T) in Muslim population of Eastern Uttar Pradesh, India. Ind J Med Sci 64(5):219–223

    Article  Google Scholar 

  53. Rai V, Yadav U, Kumar P (2012) Genotype prevalence and allele frequencies of 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T mutation in two caste groups of India. Cell Mol Biol 58:OL1695–OL1701

    PubMed  Google Scholar 

  54. Rai V, Yadav U, Kumar P, Yadav SK (2013) Analysis of methionine synthase reductase polymorphism (A66G) in Indian Muslim population. Ind J Hum Genet 19(2):183–187

    Article  CAS  Google Scholar 

  55. Rubino E, Ferrero M, Rainero I, Binello E, Vaula G, Pinessi L (2007) Association of the C677T polymorphism in the MTHFR gene with migraine: a meta-analysis. Cephalalgia 29:807–808

    Google Scholar 

  56. Scheffer IE, Berkowic SF (2003) The genetics of human epilepsy. Trends Pharmacol Sci 24:428–433

    Article  CAS  PubMed  Google Scholar 

  57. Scher AI, Wu H, Tsao JW, Blom HJ, Feit P, Nevin RL, Schwab KA (2011) MTHFR C677T genotype as a risk factor for epilepsy including post-traumatic epilepsy in a representative military cohort. J Neurotrauma 28:1739–1745

    Article  PubMed  Google Scholar 

  58. Schurks M, Rist PM, Kurth T (2010) MTHFR 677C > T and ACE D/I polymorphisms in migraine: a systematic review and meta-analysis. Headache 50:588–599

    Article  PubMed  Google Scholar 

  59. Sniezawska A, Dorszewska J, Rozycka A, Przedpelska-Ober E, Lianeri M, Jagodzinski PP, Kozubski W (2011) MTHFR, MTR, and MTHFD1 gene polymorphisms compared to homocysteine and asymmetric dimethylarginine concentrations and their metabolites in epileptic patients treated with antiepileptic drugs. Seizure 20:533–540

    Article  PubMed  Google Scholar 

  60. Song P, Liu Y, Yu X, Wu J, Poon AN, Demaio A, Wang W, Rudan I, Chan KY (2017) Prevalence of epilepsy in China between 1990 and 2015: a systematic review and meta-analysis. J Glob Health 7(2):020706. https://doi.org/10.7189/jogh.07.020706

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012

    Article  CAS  PubMed  Google Scholar 

  62. Tamura T, Aiso K, Johnston KE, Black L, Faught E (2000) Homocysteine, folate, vitamin B12 and vitamin B6 in patients receiving antiepileptic drug monotherapy. Epilepsy Res 40:7–15

    Article  CAS  PubMed  Google Scholar 

  63. Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, Hesdorffer DC, Hauser WA, Kazis L, Kobau R, Kroner B, Labiner D, Liow K, Logroscino G, Medina MT, Newton CR, Parko K, Paschal A, Preux PM, Sander JW, Selassie A, Theodore W, Tomson T, Wiebe S, for the ILAE Commission on Epidemiology (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52:2–26

    Article  CAS  PubMed  Google Scholar 

  64. Vilaseca MA, Monros E, Artuch R, Colome C, Farre C, Valls C et al (2000) Anti-epileptic drug treatment in children: hyperhomocysteinaemia, B-vitamins and the 677C!T mutation of the methylenetetrahydrofolate reductase gene. Eur J Paediatr Neurol 4:269–277

    Article  CAS  PubMed  Google Scholar 

  65. Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH (2013) Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Software 49:1–15

    Google Scholar 

  66. World Health Organization (2001) International classification of functioning, disability and health. World Health Organization, Geneva

    Google Scholar 

  67. Xu YL, Li XX, Zhuang SJ, Guo SF, Xiang JP, Wang L et al (2018) Significant association of BDNF rs6265 G-->A polymorphism with susceptibility to epilepsy: a meta-analysis. Neuropsychiatr Dis Treat 14:1035–1046

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yadav U, Kumar P, Rai V (2016a) Role of MTHFR A1298C gene polymorphism in the etiology of prostate cancer: a systematic review and updated meta-analysis. Egyptian J Med Hum Genet 17(2):141–148

    Article  Google Scholar 

  69. Yadav U, Kumar P, Gupta S, Rai V (2016b) Role of MTHFR C677T gene polymorphism in the susceptibility of schizophrenia: an updated meta-analysis. Asian J Psychiatry 20:41–51

    Article  Google Scholar 

  70. Yadav U, Kumar P, Gupta S, Rai V (2017) Distribution of MTHFR C677T gene polymorphism in healthy North Indian population and an updated meta-analysis. Ind J Clin Biochem 32(4):399–410

    Article  CAS  Google Scholar 

  71. Yoo JH, Hong SB (1999) A common mutation in the methylenetetrahydrofolate reductase gene is a determinant of hyperhomocysteinemia in epileptic patients receiving anticonvulsants. Metabolism 48:1047–1051

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana Rai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, V., Kumar, P. Methylenetetrahydrofolate reductase C677T polymorphism and susceptibility to epilepsy. Neurol Sci 39, 2033–2041 (2018). https://doi.org/10.1007/s10072-018-3583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-018-3583-z

Keywords

Navigation