Skip to main content

Advertisement

Log in

Identification of a heterozygous genomic deletion in the spatacsin gene in SPG11 patients using high-resolution comparative genomic hybridization

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Mutations in the spatacsin gene have recently been identified as the genetic cause of autosomal–recessive spastic paraplegia (SPG) with thin corpus callosum, mapping to chromosome 15p13–21. While several nonsense and frameshift mutations as well as splice mutations have been identified, large genomic deletions have not yet been found, potentially due to the absence of an efficient analysis tool. After complete sequencing of 12 autosomal recessive hereditary spastic paraplegia patients with suggestive clinical signs, we were able to define nine SPG11 cases but were left with three patients in which only one SPG11 mutation could be identified by direct sequencing. In these patients, we performed high-resolution comparative genomic hybridization using a predesigned human chromosome 15 tiling array with an average spacing of 100 bp. Data analysis suggested heterozygous genomic deletion within the spatacsin gene in all three patients. In one patient, a relatively small genomic deletion (8.2 kb) could be validated by quantitative polymerase chain reaction (PCR) and long-range PCR, allowing the diagnosis of the deletion of exons 31 through 34. For two patients, quantitative PCR validation could not confirm a genomic deletion. As high density tiling arrays are available for the entire human genome, we suggest this approach for the screening of heterozygous genomic deletions in candidate genes down to a few kilobases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stevanin G, Santorelli FM, Azzedine H, Coutinho P, Chomilier J, Denora PS et al (2007) Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet 39(3):366–372, doi:10.1038/ng1980

    Article  CAS  PubMed  Google Scholar 

  2. Hehr U, Bauer P, Winner B, Schule R, Olmez A, Koehler W et al (2007) Long-term course and mutational spectrum of spatacsin-linked spastic paraplegia. Ann Neurol 62(6):656–665, doi:10.1002/ana.21310

    Article  CAS  PubMed  Google Scholar 

  3. Stevanin G, Azzedine H, Denora P, Boukhris A, Tazir M, Lossos A, Rosa AL, Lerer I, Hamri A, Alegria P, Loureiro J, Tada M, Hannequin D, Anheim M, Goizet C, Gonzalez-Martinez V, Le Ber I, , Forlani S, Iwabuchi K, Meiner V, Uyanik G, Erichsen AK, Feki I, Pasquier F, Belarbi S, Cruz VT, Depienne C, Truchetto J, Garrigues G, Tallaksen C, Tranchant C, Nishizawa M, Vale J, Coutinho P, Santorelli FM, Mhiri C, Brice A, Durr A (2008) Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 131(Pt 3):772–784, doi:10.1093/brain/awm293

    Article  PubMed  Google Scholar 

  4. Del Bo R, Di Fonzo A, Ghezzi S, Locatelli F, Stevanin G, Costa A et al (2007) SPG11: a consistent clinical phenotype in a family with homozygous Spatacsin truncating mutation. Neurogenetics 8(4):301–305, doi:10.1007/s10048-007-0095-z

    Article  PubMed  Google Scholar 

  5. Lee MJ, Cheng TW, Hua MS, Pan MK, Wang J, Stephenson DA et al (2008) Mutations of the SPG11 gene in patients with autosomal recessive spastic paraparesis and thin corpus callosum. J Neurol Neurosurg Psychiatry 79(5):607–609, doi:10.1136/jnnp.2007.136390

    Article  PubMed  Google Scholar 

  6. Zhang SS, Chen Q, Chen XP, Wang JG, Burgunder JM, Shang HF et al (2008) Two novel mutations in the SPG11 gene causing hereditary spastic paraplegia associated with thin corpus callosum. Mov Disord 23(6):917–919, doi:10.1002/mds.21942

    Article  PubMed  Google Scholar 

  7. Paisan-Ruiz C, Dogu O, Yilmaz A, Houlden H, Singleton A (2008) SPG11 mutations are common in familial cases of complicated hereditary spastic paraplegia. Neurology 70(16 Pt 2):1384–1389, doi:10.1212/01.wnl.0000294327.66106.3d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boukhris A, Stevanin G, Feki I, Denis E, Elleuch N, Miladi MI et al (2008) Hereditary spastic paraplegia with mental impairment and thin corpus callosum in Tunisia: SPG11, SPG15, and further genetic heterogeneity. Arch Neurol 65(3):393–402, doi:10.1001/archneur.65.3.393

    Article  PubMed  Google Scholar 

  9. Simon-Sanchez J, Scholz S, Matarin MM, Fung HC, Hernandez D, Gibbs JR et al (2008) Genomewide SNP assay reveals mutations underlying Parkinson disease. Human Mutat 29(2):315–322, doi:10.1002/humu.20626

    Article  CAS  Google Scholar 

  10. Beetz C, Nygren AO, Schickel J, Auer-Grumbach M, Burk K, Heide G, Kassubek J, Klimpe S, Klopstock T, Kreuz F, Otto S, Schule R, Schols L, Sperfeld AD, Witte OW, Deufel T (2006) High frequency of partial SPAST deletions in autosomal dominant hereditary spastic paraplegia. Neurology 67(11):1926–1930, doi:10.1212/01.wnl.0000244413.49258.f5

    Article  CAS  PubMed  Google Scholar 

  11. Depienne C, Fedirko E, Forlani S, Cazeneuve C, Ribai P, Feki I et al (2007) Exon deletions of SPG4 are a frequent cause of hereditary spastic paraplegia. J Med Genet 44(4):281–284, doi:10.1136/jmg.2006.046425

    Article  CAS  PubMed  Google Scholar 

  12. Janssen B, Hartmann C, Scholz V, Jauch A, Zschocke J (2005) MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene: potential and pitfalls. Neurogenetics 6(1):29–35, doi:10.1007/s10048-004-0204-1

    Article  CAS  PubMed  Google Scholar 

  13. Scarciolla O, Brancati F, Valente EM, Ferraris A, De Angelis MV, Valbonesi S et al (2007) Multiplex ligation-dependent probe amplification assay for simultaneous detection of Parkinson’s disease gene rearrangements. Mov Disord 22(15):2274–2278, doi:10.1002/mds.21532

    Article  PubMed  Google Scholar 

  14. Slater H, Bruno D, Ren H, La P, Burgess T, Hills L et al (2004) Improved testing for CMT1A and HNPP using multiplex ligation-dependent probe amplification (MLPA) with rapid DNA preparations: comparison with the interphase FISH method. Human Mutat 24(2):164–171, doi:10.1002/humu.20072

    Article  CAS  Google Scholar 

  15. Sellner LN, Taylor GR (2004) MLPA and MAPH: new techniques for detection of gene deletions. Human Mutat 23(5):413–419, doi:10.1002/humu.20035

    Article  CAS  Google Scholar 

  16. Laccone F, Junemann I, Whatley S, Morgan R, Butler R, Huppke P et al (2004) Large deletions of the MECP2 gene detected by gene dosage analysis in patients with Rett syndrome. Human Mutat 23(3):234–244, doi:10.1002/humu.20004

    Article  CAS  Google Scholar 

  17. Shadrina MI, Semenova EV, Slominsky PA, Bagyeva GH, Illarioshkin SN, Ivanova-Smolenskaia II et al (2007) Effective quantitative real-time polymerase chain reaction analysis of the parkin gene (PARK2) exon 1–12 dosage. BMC Med Genet 8:6, doi:10.1186/1471-2350-8-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Urban AE, Korbel JO, Selzer R, Richmond T, Hacker A, Popescu GV et al (2006) High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc Natl Acad Sci U S A 103(12):4534–4539, doi:10.1073/pnas.0511340103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lissens W, Sermon K (1997) Preimplantation genetic diagnosis: current status and new developments. Hum Reprod 12(8):1756–1761, doi:10.1093/humrep/12.8.1756

    Article  CAS  PubMed  Google Scholar 

  20. Mefford HC, Clauin S, Sharp AJ, Moller RS, Ullmann R, Kapur R (2007) Recurrent reciprocal genomic rearrangements of 17q12 are associated with renal disease, diabetes, and epilepsy. Am J Hum Genet 81(5):1057–1069, doi:10.1086/522591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Winner B, Uyanik G, Gross C, Lange M, Schulte-Mattler W, Schuierer G et al (2004) Clinical progression and genetic analysis in hereditary spastic paraplegia with thin corpus callosum in spastic gait gene 11 (SPG11). Arch Neurol 61(1):117–121, doi:10.1001/archneur.61.1.117

    Article  PubMed  Google Scholar 

  22. Schule R, Holland-Letz T, Klimpe S, Kassubek J, Klopstock T, Mall V et al (2006) The Spastic Paraplegia Rating Scale (SPRS): a reliable and valid measure of disease severity. Neurology 67(3):430–434, doi:10.1212/01.wnl.0000228242.53336.90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.B., R.S., O.R., and L.S. have the support of the German Ministry of Education and Research through funding for the German Network for Movement Disorders (GeNeMove); grant 01GM0603. U.H, B.W., and the e-rare consortium EUROSPA (European and Mediterranean network on spastic paraplegias) J.W. received support from the Tom-Wahlig-Stiftung e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bauer.

Appendix

Appendix

Table 1 Synopsis of clinical and electrophysiological data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, P., Winner, B., Schüle, R. et al. Identification of a heterozygous genomic deletion in the spatacsin gene in SPG11 patients using high-resolution comparative genomic hybridization. Neurogenetics 10, 43–48 (2009). https://doi.org/10.1007/s10048-008-0144-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-008-0144-2

Keywords

Navigation