Skip to main content
Log in

The lack of true cohesion in hydrate-bearing sands

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The mechanical behavior of hydrate-bearing sands is affected by the hydrate quantity, hydrate morphology in the pores, soil skeleton characteristics, stress confinement and more. It has been traditionally assumed that bonding exists between hydrate and sand particles, which affects the global sediment strength. However, this paper shows, extending previous work, that the mechanical effect of hydrate in the sediment has kinematic rather than cohesive nature, based on comparison of mechanical and visual evidences with cemented sand. The visual analysis includes comparison between micro-scale X-ray images of sand containing either hydrate or cement agent. The mechanical analysis includes examining drained triaxial test results of hydrate-bearing sands with cemented sand results, using investigation through stress-dilatancy theories. The paper concludes that all mentioned hydrate-related effects should be interpreted by their influence on the sediment kinematics, rather than on strength characteristics. For a given kinematic response of hydrate-bearing sand, it is shown that the full mechanical behavior can be described using a single friction parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abdulla, A.A., Kiousis, P.D.: Behavior of cemented sands 1. Testing. Int. J. Numer. Anal. Methods Geomech. 21, 533–547 (1997)

    Article  Google Scholar 

  2. Aman, Z.M., Leith, W.J., Grasso, G.A., Sloan, E.D., Sum, A.K., Koh, C.A.: Adhesion force between cyclopentane hydrate and mineral surfaces. Langmuir 29, 15551–15557 (2013)

    Article  Google Scholar 

  3. Bonnefoy, O., Gruy, F., Herri, J.M.: Van der waals interactions in systems involving gas hydrates. Fluid Phase Equilib. 231(2), 176–187 (2005)

    Article  Google Scholar 

  4. Chaouachi, M., Falenty, A., Sell, K., Enzmann, F., Kersten, M., Haberthr, D., Kuhs, W.F.: Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron x-ray computed tomographic microscopy. Geochem. Geophys. Geosyst. 16, 1711–1722 (2015)

    Article  ADS  Google Scholar 

  5. De Josselin de Jong, G.: Rowe’s stress-dilatancy relation based on friction. Gotechnique 26(3), 527–534 (1976)

  6. DeJong, J., Fritzges, M., Nsslein, K.: Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. ASCE 132(11), 1381–1392 (2006)

    Article  Google Scholar 

  7. Ebinuma, T., Kamata, Y., Minagawa, H., Ohmura, R., Nagao, J., Narita, H. :Mechanical properties of sandy sediment containing methane hydrate. In: In Proceedings of the 5th International Conference on Gas Hydrates, Trondheim, Norway, vol. 3037, pp. 958–961 (2005)

  8. Hvorslev, M.J.: Conditions of failure for remodeled cohesive soils. In: 1st ICSMFE, vol. 3, p. 51 (1936)

  9. Hyodo, M., Yoneda, J., Yoshimoto, N., Nakata, Y.: Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils Found. 53(2), 299–314 (2013a)

    Article  Google Scholar 

  10. Hyodo, M., Yoshimoto, N., Kato, A., Yoneda, J.: Shear strength and deformation of methane hydrate bearing sand with fines. In: Proceedings of the 18th ICSMGE, Paris (2013b)

  11. Jiang, M.J., Yu, H.S., Harris, D.: Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. Int. J. Numer. Anal. Methods Geomech. 30, 723–761 (2006)

    Article  Google Scholar 

  12. Jung, J.W., Santamarina, J.C., Soga, K.: Stress-strain response of hydrate-bearing sands: numerical study using discrete element method simulations. J. Geophys. Res. 117, B04202 (2012)

    ADS  Google Scholar 

  13. Klar, A., Soga, K., Ng, M.Y.A.: Coupled deformation-flow analysis for methane hydrate extraction. Geotechnique 60(10), 765–776 (2010)

  14. Klar, A., Uchida, S., Soga, K., Yamamoto, K.: Explicitly coupled thermal-flow-mechanical formulation for gas hydrate sediments. SPE J. 18(2), 196–206 (2012)

    Article  Google Scholar 

  15. Masui, A., Haneda, H., Ogata, Y., Aoki, K.: Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments. In: 15th International Offshore and Polar Engineering Conference, Seoul, Korea, ISOPE, pp. 364–369 (2005)

  16. Miyazaki, K., Tenma, N., Aoki, K., Yamaguchi, T.: A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples. Energies 5(10), 4057–4075 (2012)

    Article  Google Scholar 

  17. Pinkert, S.: Rowe’s stress-dilatancy theory for hydrate-bearing sand. Int. J. Geomech. (2016). doi:10.1061/(ASCE)GM.1943-5622.0000682

    Google Scholar 

  18. Pinkert, S., Grozic, J.L.H.: Prediction of the mechanical response of hydrate bearing sands. J. Geophys. Res. Solid Earth 119, 4695–4707 (2014)

    Article  ADS  Google Scholar 

  19. Pinkert, S., Grozic, J.L.H.: Experimental verification of a prediction model for hydrate-bearing sand. J. Geophys. Res. Solid Earth (2016). doi:10.1002/2015JB012320

    Google Scholar 

  20. Pinkert, S., Grozic, J.L.H., Priest, J.: Strain-softening model for hydrate-bearing sands. Int. J. Geomech. (2015). doi:10.1061/(ASCE)GM.1943-5622.0000477

    Google Scholar 

  21. Priest, J.A., Best, A.I., Clayton, C.R.I.: A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. J. Geophys. Res. 110, B0410 (2005)

    Article  Google Scholar 

  22. Rowe, P.W.: The stress dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. Ser. A 269, 500–527 (1962)

    Article  ADS  Google Scholar 

  23. Schultze, E.: Frequently Distributions and Correlations of Soil Properties. In: Lumb, P. (ed.) Statistics and Probability in Civil Engineering. Hong Kong University Press (Hong Kong International Conference), distributed by Oxford University Press, London (1972)

  24. Skempton, A.W., Bishop, A.W.: The measurement of the shear strength of soils. Gotechnique 2(2), 90–108 (1950)

    Article  Google Scholar 

  25. Soga, K., Lee, S.L., Ng, M.Y.A., Klar, A.: Characterisation and engineering properties of methane hydrate soils. In: Hight, D.W., Lerouil, S. (eds.) 2nd International Workshop on Characterisation and Engineering Properties of Natural Soils, Singapore, vol. 4. Taylor & Francis Group, pp. 2591–2642 (2006)

  26. Sultan, N., Garziglia, S.: Geomechanical constitutive modelling of gas–hydrate-bearing sediments. In: The 7th International Conference on Gas Hydrates, Edinburgh, Scotland (2011)

  27. Uchida, S., Soga, K., Yamamoto, K.: Critical state soil constitutive model for methane hydrate soil. J. Geophys. Res. 117, B03209 (2012)

    Article  ADS  Google Scholar 

  28. Waite, W.F., Santamarina, J.C., Cortes, D.D., Dugan, B., Espinoza, D.N., Germaine, J., Jang, J., Jung, J.W., Kneafsey, T.J., Shin, H., Soga, K., Winters, W.J.: Physical properties of hydrate-bearing sediments. Rev. Geophys. 47(4), 1–38 (2009)

    Article  Google Scholar 

  29. Winters, W.J., Waite, W.F., Mason, D.H., Gilbert, L.Y., Pecher, I.A.: Methane gas hydrate effect on sediment acoustic and strength properties. J. Pet. Sci. Eng. 56(13), 127–135 (2007)

    Article  Google Scholar 

  30. Zhang, J., Salgado, R.: Stress-dilatancy relation for mohr-coulomb soils following a non-associated flow rule. Gotechnique 60(3), 223–226 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The author wish to thank Mr. Ziv Charas for his technical assistant in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shmulik Pinkert.

Ethics declarations

Conflict of interest

The author has no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinkert, S. The lack of true cohesion in hydrate-bearing sands. Granular Matter 19, 57 (2017). https://doi.org/10.1007/s10035-017-0742-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0742-5

Keywords

Navigation