Skip to main content
Log in

Granular dynamics simulations of the effect of grain size dispersity on uniaxially compacted powder blends

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We investigate, via granular dynamics simulations, the influence of particle size dispersity on the packing characteristics of uniaxially compacted pharmaceutical blends. We employ reduced models of representative pharmaceutical excipient blends comprised of one, two, four and six components of different size, where the grain size in each component is distinct. We investigate the particle dynamics and reorganization during the compaction phase after the blend has been poured into a tablet die. For small strains, we demonstrate the packing fraction of the powder blends to scale linearly with the axial strain. We do not observe any significant variation in the stress response of the blend with particle size dispersity at small strains, but the mixtures with greater particle size dispersity remain compactible up to higher strains than the less polydisperse mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  2. Benedict, M., Dutt, M., Elliott, J.A.: Dynamically tessellating algorithm for analysis of pore size distribution in particle agglomerates. Phys. A 378, 465–474 (2007)

    Article  Google Scholar 

  3. Johnson, K.L.: Contact Mechanics. Cambridge University Press, United Kingdom (1987)

    Google Scholar 

  4. Silbert, L.E., Ertaç, D., Grest, T.C., Halsey, T.C., Levine, D.: Geometry of frictionless and frictional sphere packings. Phys. Rev. E 65, 031304 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. Silbert, L.E., Ertaç, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: bagnold scaling and rheology. Phys. Rev. E 64, 051302 (2001)

    Article  ADS  Google Scholar 

  6. de Gennes, P.G.: Granular matter: a tentative view. Rev. Mod. Phys. 71, S374–S382 (1999)

    Article  Google Scholar 

  7. Geng, J., Longhi, E., Behringer, R.P., Howell, D.W.: Memory in two-dimensional heap experiments. Phys. Rev. E 64, 060301 (2001)

    Article  ADS  Google Scholar 

  8. Wu, C.-Y., Ruddy, O.M., Bentham, A.C., Hancock, B.C., Best, S.M., Elliott, J.A.: Modelling the mechanical behaviour of pharmaceutical powders during compaction. Powder Technol. 152, 107–117 (2005)

    Article  Google Scholar 

  9. Dutt, M., Hancock, B., Bentham, C., Elliott, J.: An implementation of granular dynamics for simulating frictional elastic particles based on the DL\_POLY code. Comp. Phys. Comm. 166, 26–44 (2005)

    Article  ADS  Google Scholar 

  10. Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038–1040 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fu, X., Dutt, M., Bentham, A.C., Hancock, B.C., Cameron, R.E., Elliott, J.A.: Investigation of particle packing in model pharmaceutical powders using X-ray microtomography and discrete element method. Powder Technol. 167, 134–140 (2006)

    Article  Google Scholar 

  12. Alderborn, G., Nystöm, C. (eds.): Pharmaceutical Powder Compaction Technology. Marcel Dekker Inc., New York (1996)

    Google Scholar 

  13. Roberts, R.J., Rowe, R.C., York, P.: The Poisson’s ratio of microcrystalline cellulose. Int. J. Pharm. 105, 177–180 (1994)

    Article  Google Scholar 

  14. Coulomb, C.: Mémoire de Mathematique et de Physique 7, 343 (1773)

    Google Scholar 

  15. Åström, J.A., Herrmann, H.J., Timonen, J.: Granular packings and fault zones. Phys. Rev. Lett. 84, 638–641 (2000)

    Google Scholar 

  16. Dutt, M., Hancock, B., Bentham, C., Elliott, J.: Granular templating: effects of boundary structure on particle packings under simultaneous shear and compression. Europhys. Lett. 77, 18001 (2007)

    Article  ADS  Google Scholar 

  17. Landry, J.W., Grest, G.S., Silbert, L.E., Plimpton, S.J.: Confined granular packings: structure, stress, and forces. Phys. Rev. E 67, 041303 (2003)

    Article  ADS  Google Scholar 

  18. Makse, H.A., Johnson, D.L., Schwartz, L.M.: Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160–4163 (2000)

    Article  ADS  Google Scholar 

  19. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50, 43–53 (2000)

    Article  Google Scholar 

  20. Michrafy, A., Ringenbacher, D., Tcholeroff, P.: Modelling compaction behaviour of powders: application to pharmaceutical powders. Powder Technol. 127, 257–266 (2002)

    Article  Google Scholar 

  21. Sheng, Y., Lawrence, C.J., Briscoe, B.J., Thornton, C.: Numerical studies of uniaxial powder compaction process by 3D DEM. Eng. Comput. 21, 304–317 (2004)

    Article  MATH  Google Scholar 

  22. Wu, C.-Y., Ruddy, O.M., Bentham, A.C., Hancock, B.C., Best, S.M., Elliott, J.A.: Modelling the mechanical behaviour of pharmaceutical powders during compaction. Powder Technol. 152, 107–117 (2005)

    Google Scholar 

  23. Morgeneyer, M., Brendel, L., Schwedes, J.: Compaction of bidispersive cohesive powders. Granul. Matter 10, 295–299 (2008)

    Article  MATH  Google Scholar 

  24. Ogarko, V., Luding, S.: Prediction of polydisperse hard-sphere mixture behavior using tridisperse systems, Soft Matter 9, 9530–9534 (2013)

    Google Scholar 

  25. Kumar, N., Imole, O.I., Magnanimo, V., Luding, S.: Effects of polydispersity on the micro-macro behavior of granular assemblies under different deformation paths. Particoulogy (2013) (online)

  26. Imole, O.I., Magnanimo, V., Luding, S.: Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading. Phys. Rev. E (2013) (submitted)

  27. Imole, O.I., Kumar, N., Magnanimo, V., Luding, S.: Hydrostatic and shear behavior of frictionless granular assemblies under different deformation conditions. KONA 30, 84–108 (2013)

    Google Scholar 

  28. Masin, D.: Asymptoic behavior of granular materials, hydrostatic and shear behavior of frictionless granular assemblies under different deformation conditions (2013, in press)

Download references

Acknowledgments

We would like to acknowledge Pfizer Inc. for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Dutt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutt, M., Elliott, J.A. Granular dynamics simulations of the effect of grain size dispersity on uniaxially compacted powder blends. Granular Matter 16, 243–248 (2014). https://doi.org/10.1007/s10035-013-0463-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0463-3

Keywords

Navigation