Skip to main content
Log in

A simple distinct element modeling of the mechanical behavior of methane hydrate-bearing sediments in deep seabed

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The study on the mechanical behavior of methane hydrate-bearing sediments (HBS) in deep seabed is of great significance for the safe exploitation of methane hydrate in the future. Recent studies have shown that the mechanical behavior of HBS is significantly influenced by methane hydrate since it leads to cementation among soil grains. For better understanding its microscopic mechanical mechanism, this paper presents a simple numerical model of HBS using the distinct element method (DEM). First, a set of tests on two bonded aluminum rods were performed under different loading paths with a specially designed apparatus. Then, a simple bond contact model was proposed based on the experimental data and implemented into our two-dimensional DEM code, NS2D. Finally, a series of drained biaxial compression tests under different confining stresses on HBS samples with different bond strengths, which are used to represent different methane hydrate saturations \((S_{\mathrm{MH}})\), were carried out with this code. By comparing the results of numerical simulations with the experimental data obtained from triaxial compression tests, the study shows that the DEM incorporating the new bond contact model is capable of capturing the main mechanical characteristics of HBS such as the strain softening and dilation. And it can also capture that (a) the peak shear strength increases as \(S_{\mathrm{MH}}\) or the confining stress increases, while the dilation increases as \(S_{\mathrm{MH}}\) increases or the confining stress decreases; (b) both the cohesion and friction angle increase with the increasing of \(S_{\mathrm{MH}}\), but the influence of \(S_{\mathrm{MH}}\) on the cohesion is much more significant than on the friction angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Brown, H.E., Holbrook, W.S., Hornbach, M.J., Nealon, J.: Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway. Marine Geol. 229(3–4), 179–186 (2006)

    Article  Google Scholar 

  2. Brugada, J., Cheng, Y.P., Soga, K., Santamarina, J.C.: Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution. Granul Matter 12, 517–525 (2010)

    Article  Google Scholar 

  3. Cundall, P.A., Strack, O.D.L.: The discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  4. D’Addetta, G.A., Kun, F., Ramm, E.: On the application of a discrete model to the fracture process of cohesive granular materials. Granul. Matter 4(2), 77–90 (2002)

    Article  MATH  Google Scholar 

  5. Delenne, J.Y., Youssoufi, M.S.E., Cherblanc, F., Bénet, J.C.: Mechanical behaviour and failure of cohesive granular materials. Int. J. Numer. Anal. Met. 28(15), 1577–1594 (2004)

    Article  MATH  Google Scholar 

  6. Estrada, N., Lizcano, A., Taboada, A.: Simulation of cemented granular materials: I. Macroscopic stress-strain response and strain localization. Phys. Rev. E 82, 011303 (2010)

    Article  ADS  Google Scholar 

  7. Estrada, N., Lizcano, A., Taboada, A.: Simulation of cemented granular materials: II. Micromechanical description and strength mobilization at the onset of macroscopic yielding. Phys. Rev. E82, 011304 (2010)

    ADS  Google Scholar 

  8. Freij-Ayoub, R., Tan, C., Clennell, B., Tohidi, B., Yang, J.H.: A wellbore stability model for hydrate bearing sediments. J. Petrol. Sci. Eng. 57, 209–220 (2007)

    Article  Google Scholar 

  9. Grozic, J.L.H., Ghiassian, H.: Undrained shear strength of methane hydrate-bearing sand: Preliminary laboratory results. In: Proceedings 6th Canadian Permafrost Conference and 63rd Canadian Geotechnical Conference, Calgary, pp. 459–466 (2010)

  10. Miyazaki, K., Masui, A., Sakamoto, Y., Aoki, K., Tenma, N., Yamaguchi, T.: Triaxial compressive properties of artificial methane-hydrate-bearing sediment. J. Geophys. Res. 116, B06102 (2011)

    Article  ADS  Google Scholar 

  11. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124(3), 285–292 (1998)

    Article  Google Scholar 

  12. Jiang, M.J., Harris, D., Yu, H.S.: Kinematic models for non-coaxial granular materials: Part I: Theories. Int. J. Numer. Anal. Met. 29(7), 643–661 (2005)

    Article  MATH  Google Scholar 

  13. Jiang, M.J., Harris, D., Yu, H.S.: Kinematic models for non-coaxial granular materials: Part II: Evaluation. Int. J. Numer. Anal. Met. 29(7), 663–689 (2005)

    Article  MATH  Google Scholar 

  14. Jiang, M.J., Harris, D., Zhu, H.H.: Future continuum models for granular materials in penetration analyses. Granul. Matters 9, 97–108 (2007)

    Article  MATH  Google Scholar 

  15. Jiang, M., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30, 579–597 (2003)

    Article  Google Scholar 

  16. Jiang, M.J., Leroueil, S., Konrad, J.M.: Insight into strength functions in unsaturated granulate by DEM analysis. Comput. Geotech. 31(6), 473–489 (2004)

    Article  Google Scholar 

  17. Jiang, M.J., Leroueil, S., Konrad, J.M.: Yielding of microstructured geomaterial by distinct element method analysis. J. Eng. Mech. ASCE 131(11), 1209–1213 (2005)

    Article  Google Scholar 

  18. Jiang, M.J., Leroueil, S., Zhu, H.H., Yu, H.S., Konrad, J.M.: Two-Dimensional discrete element theory for rough particles. Int. J. Geomech. ASCE 9(1), 20–33 (2009)

    Article  Google Scholar 

  19. Jiang, M.J., Murakami, A.: Distinct element method analyses of idealized bonded-granulate cut slop. Granul. Matter 14, 393–410 (2012)

    Article  Google Scholar 

  20. Jiang, M.J., Sun, Y.G., Li, L.Q., Zhu, H.H.: Contact behavior of idealized granules bonded in two different interparticle distances: An experimental investigation. Mech. Mater. 55, 1–15 (2012)

    Article  Google Scholar 

  21. Jiang, M.J., Sun, Y.G., Xiao, Y.: An experimental investigation on the mechanical behavior between cemented granules. Geotech. Test. J. (ASTM) 35(5), 678–690 (2012)

    Google Scholar 

  22. Jiang, M.J., Yan, H.B., Zhu, H.H., Utili, S.: Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses. Comput. Geotech. 38, 14–29 (2011)

    Article  Google Scholar 

  23. Jiang, M.J., Yin, Z.Y.: Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method. Tunn. Undergr. Space Technol. 32, 251–259 (2012)

    Article  Google Scholar 

  24. Jiang, M.J., Yu, H.S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  25. Jiang, M.J., Yu, H.S., Harris, D.: Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. Int. J. Numer. Anal. Met. 30(7), 723–761 (2006)

    Article  Google Scholar 

  26. Jiang, M.J., Yu, H.S., Harris, D.: Discrete element modelling of deep penetration in granular soils. Int. J. Numer. Anal. Met. 30(4), 335–361 (2006)

    Article  MATH  Google Scholar 

  27. Jiang, M.J., Yu, H.S., Leroueil, S.: A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method. Int. J. Numer. Methods Eng. 69, 1158–1193 (2007)

    Article  MATH  Google Scholar 

  28. Jiang, M.J., Zhang, W.C., Sun, Y.G., Utili, S.: An investigation on loose cemented granular materials via DEM analysis. Granul. Matter. (2013) doi:10.1007/s10035-012-0382-8 (online)

  29. Jiang, M.J., Zhu, H.H., Harris, D.: Classical and non-classical kinematic fields of two-dimensional penetration tests on granular ground by discrete element method analyses. Granul. Matter 10, 439–455 (2008)

    Article  MATH  Google Scholar 

  30. Jiang, M.J., Zhu, H.H., Li, X.M.: Strain localization analyses of idealized sands in biaxial tests by distinct element method. Front. Architect. Civil Eng. China (FAC) 4(2), 208–222 (2010)

    Article  Google Scholar 

  31. Jiang, M.J., Zhu, H.H.: An interpretation of the internal length in Chang’s couple-stress continuum for bonded granulates. Granul. Matter 9, 431–437 (2007)

    Article  MATH  Google Scholar 

  32. Kadau, D., Andrade Jr., J.S., Herrmann, H.J.: Collapsing granular suspensions. Eur. Phys. J. E 30, 275–281 (2009)

  33. Kadau, D., Andrade Jr., J.S., Herrmann, H.J.: A micromechanical model of collapsing quicksand. Granul. Matter 13, 219–223 (2011)

  34. Kayen, R.E., Lee, H.J.: Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort Sea Margin. In: Proceedings 3rd Biot Conference on Poromechanics, vol. 10, pp. 125–141 (1991)

  35. Klar, A., Soga, K., Ng, M.Y.A.: Coupled deformation-flow analysis for methane hydrate wells. Marine Geotechnology, Oklahoma, pp. 652–659 (2005)

  36. Konno, Y., Oyama, H., Nagao, J., Masuda, Y., Kurihara, M.: Numerical analysis of the dissociation experiment of naturally occurring gas hydrate in sediment cores obtained at the Eastern Nankai Trough, Japan. Energy Fuels 24, 6353–6358 (2010)

    Article  Google Scholar 

  37. Favier, L., Daudon, D., Donzé, F.V.: Rigid obstacle impacted by a supercritical cohesive granular flow using a 3D discrete element model. Cold Reg. Sci. Technol. 85, 232–241 (2013)

    Article  Google Scholar 

  38. Luding, S.: Cohesive, frictional powders: Contact models for tension. Granul. Matter 10, 235–246 (2008)

    Article  MATH  Google Scholar 

  39. Luding, S., Manetsberger, K., Müllers, J.: A discrete model for long time sintering. J. Mech. Phys. Solids 53, 455–491 (2005)

    Article  ADS  MATH  Google Scholar 

  40. Masui, A., Haneda, H., Ogata, Y., Aoki, K.: Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments. In: Proceedings of the Fifteenth International Offshore and Polar Engineering Conference. June 19–24, Seoul, Korea (2005)

  41. Masui, A., Haneda, H., Ogata, Y., Aoki, K.: The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments. In: Proceedings of the 5th International Conference on Gas Hydrates. June 13–16, Trondheim, Norway. Paper No. 2037 (2005)

  42. Miyazaki, K., Masui, A., Sakamoto, Y., Aoki, K., Tenma, N., Yamaguchi, T.: Triaxial compressive properties of artificial methane-hydrate-bearing sediment. J. Geophys. Res. 116, B06102 (2011)

    Article  ADS  Google Scholar 

  43. Nixon, M.F., Grozic, J.L.H.: Submarine slope failure due to hydrate dissociation: A preliminary quantification. Can. Geotech. J. 44, 314–325 (2007)

    Article  Google Scholar 

  44. Oda, M., Iwashita, K.: Study on pair stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38, 1713–1740 (2000)

    Article  Google Scholar 

  45. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41, 1329–1364 (2004)

    Article  Google Scholar 

  46. Rutqvist, J., Grover, T., Moridis, G.J.: Coupled hydrologic, thermal and geomechanical analysis of well bore stability in hydrate-bearing sediments. OTC 19572, Offshore Technology Conference. May 5–8, Houston, Texas, USA (2008)

  47. Rutqvist, J., Moridis G., Grover, T., Collett, T.: Geomechanical response of known permafrost hydrate deposits to depressurization induced production. In: 6th International Conference on Gas Hydrates, Chevron, Vancouver, BC, Canada. Paper No. 5726 (2008)

  48. Soga, K., Lee, S.L., Ng, M.Y.A., Klar, A.: Characterization and engineering properties of methane hydrate soils. In: Phoon, K.K., Hight, D.W., Leroueil, S., Tan, T.S. (eds.) Characterization and Engineering Properties of Natural Soils, vol. 4. Taylor and Francis, London, pp. 2591–2642 (2006)

  49. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  50. Thornton, C., Zhang, L.: Anumerical examination of shear banding and simple shear non-coaxial flow rules. Philos. Mag. 86(21–22), 3425–3452 (2006)

    Article  ADS  Google Scholar 

  51. Utili, S., Crosta, G.B.: Modelling the evolution of natural cliffs subject to weathering: 2. Discrete element approach. J. Geophys. Res. 116, F01017 (2011)

    Article  ADS  Google Scholar 

  52. Utili, S., Nova, R.: DEM analysis of bonded granular geomaterials. Int. J. Numer. Anal. Methods Geomech. 32, 1997–2031 (2008)

    Article  Google Scholar 

  53. Vedachalam, V.: Discrete Element Modelling Of Granular Snow Particles Using LIGGGHTS. Ph.D Dissertation. Edinburgh Parallel Computing Centre. The University of Edinburgh, UK. August (2011)

  54. Waite, W.F., Santamarina, J.C., Cortes, D.D., Dugan, B., Espinoza, D.N., Germaine, J., Jang, J., Jung, J.W., Kneafsey, T.J., Shin, H., Soga, K., Winter, W.J., Yun, T.S.: Physical properties of hydrate-bearing sediments. Rev. Geophys. 47, 1–38 (2009)

    Google Scholar 

  55. Wang, J., Jiang, M.J.: Unified soil behavior of interface shear test and direct shear test under the influence of lower moving boundaries. Granul. Matter 13(5), 631–741 (2011)

    Article  Google Scholar 

  56. Wang, Y.H., Leung, S.C.: A particular-scale investigation of cemented sand behavior. Can. Geotech. J. 45(1), 29–44 (2008)

    Article  MathSciNet  Google Scholar 

  57. Wang, Y.H., Leung, S.C.: Characterization of cemented sand by experimental and numerical investigations. J. Geotech. Geoenviron. Eng. (ASCE) 134(7), 992–1004 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by China National Funds for Distinguished Young Scientists with Grant No. 51025932, and PhD Programs Foundation of Ministry of Education of China with Grant No. 20100072110048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, M.J., Sun, Y.G. & Yang, Q.J. A simple distinct element modeling of the mechanical behavior of methane hydrate-bearing sediments in deep seabed. Granular Matter 15, 209–220 (2013). https://doi.org/10.1007/s10035-013-0399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0399-7

Keywords

Navigation