Skip to main content
Log in

Muskoxen Modify Plant Abundance, Phenology, and Nitrogen Dynamics in a High Arctic Fen

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Herbivores are key drivers of vegetation dynamics in most ecosystems. However, the effect of high arctic herbivores on vegetation dynamics throughout a growing season is not well understood. In this study, we examine the impacts of a large dominant herbivore in the tundra ecosystem, the muskox, Ovibos moschatus, using exclosures established in a fen in high Arctic Greenland. Using weekly sampling throughout the growing season, we quantified the effects of muskox exclusion on aboveground plant biomass and on concentrations and pools of carbon and nitrogen, and explored the timing of peak biomass and nutrient pools. Excluding muskoxen profoundly changed plant abundances and dynamics of the fen, with more than a doubling of aboveground plant biomass and carbon and nitrogen pool sizes. Specifically, large increases in mosses and litter were observed, while graminoid biomass did not change significantly with exclusion of muskoxen. Excluding muskoxen advanced the peak of plant biomass, but also led to a more rapid decline, resulting in an earlier and shorter period of maximal plant biomass inside the exclosures. The largest impact of muskoxen on the arctic fen ecosystem seems to be through their trampling effects on the moss layer, which likely mediated most of the observed changes. This study demonstrates how quickly an ecosystem may respond to changes in the abundance of large herbivores and highlights their pivotal role in modifying vegetation dynamics and nutrient cycling in tundra ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Arndal MF, Illeris L, Michelsen A, Albert K, Tamstorf M, Hansen BU. 2009. Seasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high Arctic vegetation types. Arct Antarct Alp Res 41:164–73.

    Article  Google Scholar 

  • Bardgett RD, van der Wal R, Jónsdóttir IS, Quirk H, Dutton S. 2007. Temporal variability in plant and soil nitrogen pools in a high-Arctic ecosystem. Soil Biol Biochem 39:2129–37.

    Article  CAS  Google Scholar 

  • Barthelemy H, Stark S, Olofsson J. 2015. Strong responses of sub-Arctic plant communities to long-term reindeer feces manipulation. Ecosystems 18:740–51.

    Article  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.

    Article  Google Scholar 

  • Bay C. 1998. Vegetation mapping of Zackenberg Valley, Northeast Greenland. Denmark: Danish Polar Center & Botanical Museum, University of Copenhagen.

    Google Scholar 

  • Bliss LC. 1986. Arctic ecosystems: their structure, function and herbivore carrying capacity. In: Gudmundsson O, Ed. Grazing research at northern latitudes: NATO ASI Series. New York: Springer. pp 5–25.

  • Bueno CG, Williamson SN, Barrio IC, Helgadóttir Á, HiK DS. 2016. Moss mediates the influence of shrub species on soil properties and processes in Alpine Tundra. PLoS ONE 11:e0164143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD. 2007. Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–65.

    Article  Google Scholar 

  • Doiron M, Gauthier G, Lévesque E. 2014. Effects of experimental warming on nitrogen concentration and biomass of forage plants for an Arctic herbivore. J Ecol 102:508–17.

    Article  Google Scholar 

  • Elberling B, Tamstorf MP, Michelsen A, Arndal MF, Sigsgaard C, Illeris L, Bay C, Hansen BU, Christensen TR, Hansen ES, Jakobsen BH, Beyens L. 2008. Soil and plant community-characteristics and dynamics at Zackenberg. Adv Ecol Res 40(40):223–48.

    Article  Google Scholar 

  • Elliott TL, Henry GHR. 2011. Effects of simulated grazing in ungrazed wet Sedge Tundra in the high Arctic. Arct Antarct Alp Res 43:198–206.

    Article  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumveeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgensen JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Lévesque E, Magnusson B, May JL, Mercado-Diaz JA, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Schmidt NM, Shaver G, Spasojevic MJ, Porhallsdóttir PE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren C, Walker X, Webber PJ, Welker JM, Wipf S. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Chang . 10.1038/nclimate1465.

    Article  Google Scholar 

  • Facelli J, Pickett SA. 1991. Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32.

    Article  Google Scholar 

  • Falk JM, Schmidt NM, Christensen TR, Ström L. 2015. Large herbivore grazing affects the vegetation structure and greenhouse gas balance in a high Arctic mire. Environ Res Lett 10:045001.

    Article  CAS  Google Scholar 

  • Falk JM, Schmidt NM, Ström L. 2014. Effects of simulated increased grazing on carbon allocation patterns in a high Arctic mire. Biogeochemistry 119:229–44.

    Article  CAS  Google Scholar 

  • Forchhammer MC, Post E, Berg TBG, Høye TT, Schmidt NM. 2005. Local-scale and short-term herbivore-plant spacial dynamics reflect influences of a large-scale climate. Ecology 86:2644–51.

    Article  Google Scholar 

  • Gornall J, Woodin S, Jónsdóttir I, Van der Wal R. 2009. Herbivore impacts to the moss layer determine tundra ecosystem response to grazing and warming. Oecologia 161:747–58.

    Article  PubMed  Google Scholar 

  • Gornall JL, Jónsdóttir IS, Woodin SJ, Van der Wal R. 2007. Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153:931–41.

    Article  CAS  PubMed  Google Scholar 

  • Gornall JL, Woodin SJ, Jónsdóttir IS, van der Wal R. 2011. Balancing positive and negative plant interactions: how mosses structure vascular plant communities. Oecologia 166:769–82.

    Article  PubMed  Google Scholar 

  • Gough L, Shrestha K, Johnson DR, Moon B. 2008. Long-term mammalian herbivory and nutrient addition alter lichen community structure in Alaskan dry heath Tundra. Arct Antarct Alp Res 40:65–73.

    Article  Google Scholar 

  • Hansen BU, Sigsgaard C, Rasmussen L, Cappelen J, Hinkler J, Mernild SH, Petersen D, Tamstorf MP, Rasch M, Hasholt B. 2008. Present-day climate at Zackenberg. Adv Ecol Res 40(40):111–49.

    Article  Google Scholar 

  • Henry GHR, Svoboda J, Freedman B. 1990. Standing crop and net production of sedge meadows of an ungrazed polar desert oasis. Can J Bot 68:2660–7.

    Article  Google Scholar 

  • Hobara S, McCalley C, Koba K, Giblin AE, Weiss MS, Gettel GM, Shaver GR. 2006. Nitrogen fixation in surface soils and vegetation in an Arctic Tundra watershed: a key source of atmospheric nitrogen. Arct Antarct Alp Res 38:363–72.

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biom J 50:346–63.

    Article  Google Scholar 

  • Høye TT, Post E, Meltofte H, Schmidt NM, Forchhammer MC. 2007. Rapid advancement of spring in the high Arctic. Curr Biol 17:R449–51.

    Article  CAS  PubMed  Google Scholar 

  • Ihl C, Barboza PS. 2007. Nutritional value of moss for Arctic ruminants: a test with muskoxen. J Wildl Manage 71:752–8.

    Article  Google Scholar 

  • Jefferies RL, Klein CJ, Shaver G. 1994. Vertebrate herbivores and northern plant communities: reciprocal influences and responses. Oikos 71:193–206.

    Article  Google Scholar 

  • Johnson DR, Lara MJ, Shaver GR, Batzli GO, Shaw JD, Tweedie CE. 2011. Exclusion of brown lemmings reduces vascular plant cover and biomass in Arctic coastal Tundra: resampling of a 50+ year herbivore exclosure experiment near Barrow, Alaska. Environ Res Lett 6:045507.

    Article  Google Scholar 

  • Kaarlejärvi E, Hoset KS, Olofsson J. 2015. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate. Glob Chang Biol 21:3379–88.

    Article  PubMed  Google Scholar 

  • Kristensen DK, Kristensen E, Forchhammer MC, Michelsen A, Schmidt NM. 2011. Arctic herbivore diet can be inferred from stable carbon and nitrogen isotopes in C3 plants, faeces, and wool. Can J Zool 89:893–900.

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB. 2016. lmerTest: tests in linear mixed effects models. R package version 2.0-33. http://CRAN.R-project.org/package=lmerTest.

  • Lepage D, Gauthier G, Reed A. 1998. Seasonal variation in growth of greater snow goose goslings: the role of food supply. Oecologia 114:226–35.

    Article  PubMed  Google Scholar 

  • Lett S, Michelsen A. 2014. Seasonal variation in nitrogen fixation and effects of climate change in a sub-Arctic heath. Plant Soil 379:193–204.

    Article  CAS  Google Scholar 

  • Maron JL, Crone E. 2006. Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc B Biol Sci 273:2575–84.

    Article  Google Scholar 

  • Mosbacher JB, Kristensen DK, Michelsen A, Stelvig M, Schmidt NM. 2016a. Quantifying muskox biomass removal and spatial relocation of nitrogen in a high Arctic Tundra ecosystem. Arct Antarct Alp Res 48:229–40.

    Article  Google Scholar 

  • Mosbacher JB, Michelsen A, Stelvig M, Hendrichsen DK, Schmidt NM. 2016b. Show me your rump hair and I will tell you what you ate—The dietary history of Muskoxen (Ovibos moschatus) revealed by sequential stable isotope analysis of guard hairs. PLoS ONE 11:e0152874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder CPH. 1999. Vertebrate herbivores and plants in the Arctic and sub-Arctic: effects on individuals, populations, communities and ecosystems. Perspect Plant Ecol Evol Syst 2:29–55.

    Article  Google Scholar 

  • Murray JL. 1991. Biomass distribution and nutrient pool and dynamics in the major muskox-grazed communities at Sverdup Pass (79 N), Ellesmere Island, N.W.T., Canada. Canada: University of Toronto. pp 1–183.

  • Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Levesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jorgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS, Vellend M. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat Clim Chang 5:887–91.

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA. 1991. Effects of temperature and substrate quality on element mineralization in 6 Arctic soils. Ecology 72:242–53.

    Article  Google Scholar 

  • Olofsson J, Kitti H, Rautiainen P, Stark S, Oksanen L. 2001. Effects of summer grazing by reindeer on composition of vegetation, productivity and nitrogen cycling. Ecography 24:13–24.

    Article  Google Scholar 

  • Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O. 2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Glob Chang Biol 15:2681–93.

    Article  Google Scholar 

  • Olofsson J, Stark S, Oksanen L. 2004. Reindeer influence on ecosystem processes in the tundra. Oikos 105:386.

    Article  CAS  Google Scholar 

  • Piedboeuf N, Gauthier G. 1999. Nutritive quality of forage plants for greater snow goose goslings: When is it advantageous to feed on grazed plants? Can J Zool 77:1908–18.

    Article  Google Scholar 

  • Post E. 2013. Erosion of community diversity and stability by herbivore removal under warming. Proc R Soc B Biol Sci 280.

  • Post E, Bøving PS, Pedersen C, MacArthur MA. 2003. Synchrony between caribou calving and plant phenology in depredated and non-depredated populations. Can J Zool 81:1709–14.

    Article  Google Scholar 

  • Post E, Forchhammer MC. 2008. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos Trans R Soc B Biol Sci 363:2369–75.

    Article  Google Scholar 

  • Post E, Pedersen C. 2008. Opposing plant community responses to warming with and without herbivores. Proc Natl Acad Sci 105:12353–8.

    Article  PubMed  Google Scholar 

  • Post E, Pedersen C, Wilmers CC, Forchhammer MC. 2008. Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc R Soc B Biol Sci 275:2005–13.

    Article  Google Scholar 

  • Price PW. 2002. Resource-driven terrestrial interaction webs. Ecol Res 17:241–7.

    Article  Google Scholar 

  • R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  • Raillard M, Svoboda J. 2000. High grazing impact, selectivity, and local density of muskoxen in central Ellesmere Island, Canadian high Arctic. Arct Antarct Alp Res 32:278–85.

    Article  Google Scholar 

  • Ravolainen VT, Bråthen KA, Yoccoz NG, Nguyen JK, Ims RA. 2014. Complementary impacts of small rodents and semi-domesticated ungulates limit tall shrub expansion in the tundra. J Appl Ecol 51:234–41.

    Article  Google Scholar 

  • Rinnan R, Stark S, Tolvanen A. 2009. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a sub-Arctic heath. J Ecol 97:788–800.

    Article  CAS  Google Scholar 

  • Rousk K, Sørensen PL, Michelsen A. 2017. Nitrogen fixation in the High Arctic: a source of ‘new’ nitrogen? Biogeochemistry 136:213–22.

    Article  CAS  Google Scholar 

  • Schmidt NM, Beest FMV, Mosbacher JB, Stelvig M, Hansen LH, Nabe-Nielsen J, Grøndahl C. 2016. Ungulate movement in an extreme seasonal environment: year-round movement patterns of high-Arctic muskoxen. Wildl Biol 22:253–67.

    Article  Google Scholar 

  • Schmidt NM, Kristensen DK, Michelsen A, Bay C. 2012. High Arctic plant community responses to a decade of ambient warming. Biodiversity 13:191–9.

    Article  Google Scholar 

  • Schmidt NM, Krogh PH, Forchhammer MC. 2011. Herbivore influences on ecosystem functioning: establishment of musk ox exclosures at Zackenberg. Technical report from DCE—Danish Centre for Environment and Energy: Aarhus University, Department of Bioscience.

  • Schmidt NM, Pedersen SH, Mosbacher JB, Hansen LH. 2015. Long-term patterns of muskox (Ovibos moschatus) demographics in high Arctic Greenland. Polar Biol 38:1667–75.

    Article  Google Scholar 

  • Shaver GR, Chapin FS. 1991. Production: biomass relationships and element cycling in contrasting Arctic vegetation types. Ecol Monogr 61:1–31.

    Article  Google Scholar 

  • Sjögersten S, van der Wal R, Woodin SJ. 2012. Impacts of grazing and climate warming on C pools and decomposition rates in Arctic environments. Ecosystems 15:349–62.

    Article  CAS  Google Scholar 

  • Sørensen LI, Mikola J, Kytöviita M-M, Olofsson J. 2009. Trampling and spatial heterogeneity explain decomposer abundances in a sub-Arctic grassland subjected to simulated reindeer grazing. Ecosystems 12:830–42.

    Article  Google Scholar 

  • Stark S, Grellmann D. 2002. Soil microbial responses to herbivory in an Arctic Tundra heath at two levels of nutrient availability. Ecology 83:2736–44.

    Article  Google Scholar 

  • Ström L, Tagesson T, Mastepanov M, Christensen TR. 2012. Presence of Eriophorum scheuchzeri enhances substrate availability and methane emission in an Arctic wetland. Soil Biol Biochem 45:61–70.

    Article  CAS  Google Scholar 

  • Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, Helaouet P, Johns DG, Jones ID, Leech DI, Mackay EB, Massimino D, Atkinson S, Bacon PJ, Brereton TM, Carvalho L, Clutton-Brock TH, Duck C, Edwards M, Elliott JM, Hall SJG, Harrington R, Pearce-Higgins JW, Høye TT, Kruuk LEB, Pemberton JM, Sparks TH, Thompson PM, White I, Winfield IJ, Wanless S. 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 535:241–5.

    Article  CAS  Google Scholar 

  • Van Beest FM, Mysterud A, Loe LE, Milner JM. 2010. Forage quantity, quality and depletion as scale-dependent mechanisms driving habitat selection of a large browsing herbivore. J Anim Ecol 79:910–22.

    PubMed  Google Scholar 

  • Van der Putten WH, Macel M, Visser ME. 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc Lond B Biol Sci 365:2025–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Wal R. 2006. Do herbivores cause habitat degradation or vegetation state transition? Evidence from the Tundra. Oikos 114:177–86.

    Article  Google Scholar 

  • van der Wal R, Bardgett RD, Harrison KA, Stien A. 2004. Vertebrate herbivores and ecosystem control: cascading effects of faeces on Tundra ecosystems. Ecography 27:242–52.

    Article  Google Scholar 

  • van der Wal R, Brooker RW. 2004. Mosses mediate grazer impacts on grass abundance in Arctic ecosystems. Funct Ecol 18:77–86.

    Article  Google Scholar 

  • van der Wal R, Hessen DO. 2009. Analogous aquatic and terrestrial food webs in the high Arctic: the structuring force of a harsh climate. Perspect Plant Ecol Evol Syst 11:231–40.

    Article  Google Scholar 

  • van der Wal R, Madan N, van Lieshout S, Dormann C, Langvatn R, Albon SD. 2000. Trading forage quality for quantity? Plant phenology and patch choice by Svalbard reindeer. Oecologia 123:108–15.

    Article  PubMed  Google Scholar 

  • van der Wal RR, van Lieshout SMJ, Loonen MJJE. 2001. Herbivore impact on moss depth, soil temperature and Arctic plant growth. 24:29–32.

  • Westergaard-Nielsen A, Lund M, Pedersen SH, Schmidt NM, Klosterman S, Abermann J, Hansen BU. 2017. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013. Ambio 46:39–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • White TC. 2012. The inadequate environment: nitrogen and the abundance of animals. Springer.

  • Ylänne H, Stark S, Tolvanen A. 2015. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the sub-Arctic Tundra. Glob Chang Biol 21:3696–711.

    Article  PubMed  Google Scholar 

  • Zamin TJ, Grogan P. 2013. Caribou exclusion during a population low increases deciduous and evergreen shrub species biomass and nitrogen pools in low Arctic Tundra. J Ecol 101:671–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Aarhus University is thanked for providing access to the Zackenberg Research Station. We are grateful for the financial support from 15. Juni Fonden, Arctic Research Centre at Aarhus University, and the Danish National Research Foundation for supporting CENPERM (DNRF 100). Special thanks are due to Lars Holst Hansen, Jannik Hansen, and Christian Bay for their assistance in the field, and to Gosha Sylvester for assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Bruun Mosbacher.

Additional information

Author Contributions

JBM, AM, MS and NMS conceived the idea of the manuscript. JBM, HHS and NMS conducted the fieldwork. JBM and AM conducted the laboratory work. JBM conducted the data analysis. All authors worked and contributed to writing of the manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosbacher, J.B., Michelsen, A., Stelvig, M. et al. Muskoxen Modify Plant Abundance, Phenology, and Nitrogen Dynamics in a High Arctic Fen. Ecosystems 22, 1095–1107 (2019). https://doi.org/10.1007/s10021-018-0323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0323-4

Keywords

Navigation