Skip to main content

Advertisement

Log in

Climate Versus In-Lake Processes as Controls on the Development of Community Structure in a Low-Arctic Lake (South-West Greenland)

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The dominant processes determining biological structure in lakes at millennial timescales are complex. In this study, we used a multi-proxy approach to determine the relative importance of in-lake versus indirect processes on the Holocene development of an oligotrophic lake in SW Greenland (66.99°N, 50.97°W). A 14C and 210Pb-dated sediment core covering approximately 8500 years BP was analyzed for organic–inorganic carbon content, pigments, diatoms, chironomids, cladocerans, and stable isotopes (δ13C, δ18O). Relationships among the different proxies and a number of independent controlling variables (Holocene temperature, an isotope-inferred cooling period, and immigration of Betula nana into the catchment) were explored using redundancy analysis (RDA) independent of time. The main ecological trajectories in the lake biota were captured by ordination first axis sample scores (18–32% variance explained). The importance of the arrival of Betula (ca. 6500 years BP) into the catchment was indicated by a series of partial-constrained ordinations, uniquely explaining 12–17% of the variance in chironomids and up to 9% in pigments. Climate influences on lake biota were strongest during a short-lived cooling period (identified by altered stable isotopes) early in the development of the lake when all proxies changed rapidly, although only chironomids had a unique component (8% in a partial-RDA) explained by the cooling event. Holocene climate explained less variance than either catchment changes or biotic relationships. The sediment record at this site indicates the importance of catchment factors for lake development, the complexity of community trends even in relatively simple systems (invertebrates are the top predators in the lake) and the challenges of deriving palaeoclimate inferences from sediment records in low-Arctic freshwater lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU. 1997. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–6.

    Article  Google Scholar 

  • Amsinck SL, Strzelczak A, Bjerring R, Landkildehus F, Lauridsen TL, Christoffersen K, Jeppesen E. 2006. Lake depth rather than fish planktivory determines cladoceran community structure in Faroese lakes—evidence from contemporary data and sediments. Freshwater Biol 51:2124–42.

    Article  CAS  Google Scholar 

  • Anderson L, Abbott MB, Finney BP. 2001a. Holocene climate inferred from oxygen isotope ratios in lake sediments, central Brooks Range, Alaska. Quaternary Res 55:313–21.

    Article  CAS  Google Scholar 

  • Anderson NJ. 2000. Diatoms, temperature and climatic change. Eur J Phycol 35:307–14.

    Google Scholar 

  • Anderson NJ, Battarbee RW. 1994. Aquatic community persistence and variability: a palaeolimnological perspective. In: Giller PS, Hildrew AG, Raffaelli DG, Eds. Aquatic ecology: scale, pattern and process. Blackwell Scientific Publications, University College, Cork. p 233–59.

    Google Scholar 

  • Anderson NJ, Leng MJ. 2004. Increased aridity during the early Holocene in West Greenland inferred from stable isotopes in laminated-lake sediments. Quaternary Sci Rev 23:841–9.

    Article  Google Scholar 

  • Anderson NJ, Stedmon CJ. 2007. The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshwater Biol 52:280–9.

    Article  CAS  Google Scholar 

  • Anderson NJ, Harriman R, Ryves DB, Patrick ST. 2001b. Dominant factors controlling variability in the ionic composition of West Greenland Lakes. Arct Antarct Alp Res 33:418–25.

    Article  Google Scholar 

  • Anderson NJ, Renberg I, Segerstrom U. 1995. Diatom production responses to the development of early agriculture in a boreal forest lake-catchment (Kassjon, Northern Sweden). J Ecol 83:809–22.

    Article  Google Scholar 

  • Appleby PG, Oldfield F. 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8.

    Article  CAS  Google Scholar 

  • Battarbee RW. 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Sci Rev 19:107–24.

    Article  Google Scholar 

  • Bennett KD. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–70.

    Article  Google Scholar 

  • Bennike O. 1999. Colonisation of Greenland by plants and animals after the last ice age. Polar Rec 35:323–36.

    Article  Google Scholar 

  • Bennike O. 2000. Palaeoecological studies of Holocene lake sediments from west Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 155:285–304.

    Article  Google Scholar 

  • Bennike O, Brodersen KP, Jeppesen E, Walker IR. 2004. Aquatic Invertebrates and High Latitude Paleolimnology. In: Pienitz R, Douglas MSV, Smol JP, Eds. Long-term environmental change in Arctic and Antarctic lakes. Springer-Verlag, Dordrecht. pp 159–86.

    Chapter  Google Scholar 

  • Bindler R, Renberg I, Appleby PG, Anderson NJ, Rose NL. 2001. Mercury accumulation rates and spatial patterns in lake sediments from west Greenland: a coast to ice margin transect. Environ Sci Technol 35:1736–41.

    Article  PubMed  CAS  Google Scholar 

  • Birks HH, Battarbee RW, Birks HJB. 2000. The development of the aquatic ecosystem at Krakenes Lake, western Norway, during the late glacial and early Holocene—a synthesis. J Paleolimnol 23: 91–114.

    Article  Google Scholar 

  • Birks HH, Birks HJB. 2006. Multi-proxy studies in palaeolimnology. Veg Hist Archaeobot 15: 235–51.

    Article  Google Scholar 

  • Birks HJB. 1986. Late-quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to north-west Europe. In: Berglund BE, Ed. Handbook of holocene palaeoecology and palaeohydrology. J.Wiley & Sons, Chichester. pp 3–65.

    Google Scholar 

  • Birks HJB. 1998. Numerical tools in palaeolimnology—Progress, potentialities, and problems. J Paleolimnol 20:307–32.

    Article  Google Scholar 

  • Briner JP, Michelutti N, Francis DR, Miller GH, Axford Y, Wooller MJ, Wolfe AP. 2006. A multi-proxy lacustrine record of Holocene climate change on northeastern Baffin Island, Arctic Canada. Quaternary Res 65:431–42.

    Article  Google Scholar 

  • Brodersen KP. 2007. Chironomids (Diptera) from sub-saline lakes in West Greenland: diversity, assemblage structure and respiratory adaptation. In: Andersen T, Ed. Contributions to the systematics and ecology of aquatic Diptera—a tribute to Ole A. Saether. The Caddis Press. pp 61–8.

  • Brodersen KP, Anderson NJ. 2002. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biol 47:1137–57.

    Article  Google Scholar 

  • Brodersen KP, Pedersen O, Lindegaard C, Hamburger K. 2004. Chironomids (Diptera) and oxy-regulatory capacity: An experimental approach to paleolimnological interpretation. Limnol Oceanogr 49:1549–59.

    Article  CAS  Google Scholar 

  • Brodersen KP, Quinlan R. 2006. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Sci Rev 25:1995–2012.

    Article  Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634–9.

    Article  Google Scholar 

  • Christoffersen KS, Amsinck SL, Landkildehus F, Lauridsen TL, Jeppesen E. Lake flora and fauna in relation to ice-melt, water temperature and chemistry. In: Meltofte H, CTR, EB, FM, Rasch M, Eds. Dynamic of a high Arctic Ecosystem: relations to climate variability and change. Advances in Ecological Research. Elsevier Ltd. (in press).

  • Cremer H, Wagner B, Melles M, Hubberten HW. 2001. The postglacial environmental development of Raffles So, East Greenland: inferences from a 10,000 year diatom record. J Paleolimnol 26:67–87.

    Article  Google Scholar 

  • Dahl-Jensen D, Mosegaard K, Gundestrup N, Clow GD, Johnsen SJ, Hansen AW, Balling N. 1998. Past temperatures directly from the Greenland ice sheet. Science 282:268–71.

    Article  PubMed  CAS  Google Scholar 

  • Dean WE. 1974. Determination of carbonate and organic-matter in calcareous sediments and sedimentary-rocks by loss on ignition—comparison with other methods. J Sediment Petrol 44:242–8.

    CAS  Google Scholar 

  • Engstrom DR, Fritz SC. 2006. Coupling between primary terrestrial succession and the trophic development of lakes at Glacier Bay, Alaska. J Paleolimnol 35:873–80.

    Article  Google Scholar 

  • Engstrom DR, Fritz SC, Almendinger JE, Juggins S. 2000. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–6.

    Article  PubMed  CAS  Google Scholar 

  • Fallu MA, Pienitz R, Walker IR, Lavoiec M. 2005. Paleolimnology of a shrub-tundra lake and response of aquatic and terrestrial indicators to climatic change in arctic Quebec, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 215:183–203.

    Article  Google Scholar 

  • Fredskild B. 1977. The development of the Greenland lakes since the last glaciation. Folia Limnol Scand 17:101–6.

    Google Scholar 

  • Fredskild B. 1983. The Holocene development of some low and high Arctic Greenland lakes. Hydrobiologia 103:217–24.

    Article  Google Scholar 

  • Fredskild B. 1991. The genus Betula in Greenland—Holocene history, present distribution and synecology. Nord J Bot 11:393–412.

    Google Scholar 

  • Fredskild B. 1992. The Greenland limnophytes—their present distribution and Holocene history. Acta Bot Fenn 144:93–113.

    Google Scholar 

  • Fredskild B, Roen U. 1982. Macrofossils in an Interglacial Peat Deposit at Kap Kobenhavn, North Greenland. Boreas 11:181–5.

    Article  Google Scholar 

  • Frey DG. 1986. Cladocera analysis. In: Berglund BE, Ed. Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons Ltd. pp 667–92.

  • George DG. 2000. The impact of regional-scale changes in the weather on the long-term dynamics of Eudiaptomus and Daphnia in Esthwaite Water, Cumbria. Freshwater Biol 45:111–21.

    Article  Google Scholar 

  • Gibson CE, Foy RH. 1983. The photosynthesis and growth efficiency of a planktonic blue-green-alga, Oscillatoria-Redekei. Br Phycol J 18:39–45.

    Article  Google Scholar 

  • Hall K, Thorn CE, Matsuoka N, Prick A. 2002. Weathering in cold regions: some thoughts and perspectives. Prog Phys Geogr 26:577–603.

    Article  Google Scholar 

  • Hall RI, Leavitt PR, Quinlan R, Dixit AS, Smol JP. 1999. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol Oceanogr 44:739–56.

    Article  CAS  Google Scholar 

  • Hasholt B, Søgaard H. 1978. Et forsøg på en klimatisk-hydrologisk regionsinddeling af Holsteinborgs Kommune (Sisimiut). Geografisk Tidsskrift 77:72–92.

    Google Scholar 

  • Hausmann S, Lotter AF, van Leeuwen JFN, Ohlendorf C, Lemcke G, Gronlund E, Sturm M. 2002. Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. Holocene 12:279–89.

    Article  Google Scholar 

  • Heegaard E, Birks HH, Gibson CE, Smith SJ, Wolfe-Murphy S. 2001. Species-environmental relationships of aquatic macrophytes in Northern Ireland. Aquat Bot 70:175–223.

    Article  Google Scholar 

  • Heide-Jørgensen HS, Johnsen I. 1998. Ecosystem vulnerability to climate change in Greenland and the Faroe Islands. Danish Environmental Protection Agency.

  • Heinrichs ML, Peglar SM, Bigler C, Birks HJB. 2005. A multi-proxy palaeoecological study of Alanen Laanijarvi, a boreal-forest lake in Swedish Lapland. Boreas 34:192–206.

    Article  Google Scholar 

  • Hofmann W. 1986. Chironomid analysis. In: Berglund BE, Ed. Handbook of Holocene palaeoecology and palaeohydrology. John Wiley & Sons, Chichester. pp 715–27.

    Google Scholar 

  • Hu FS, Finney BP, Brubaker LB. 2001. Effects of holocene Alnus expansion on aquatic productivity, nitrogen cycling, and soil development in southwestern Alaska. Ecosystems 4:358–68.

    Article  CAS  Google Scholar 

  • Jeppesen E, Christoffersen K, Landkildehus F, Lauridsen T, Amsinck SL, Riget F, Sondergaard M. 2001a. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442:329–37.

    Article  Google Scholar 

  • Jeppesen E, Leavitt P, De Meester L, Jensen JP. 2001b. Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16:191–8.

    Article  PubMed  Google Scholar 

  • Jongman RHG, ter Braak CJF, van Tongeren OFR. 1995. Data analysis in community and landscape ecology, 2nd edition. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Korsman T, Renberg I, Anderson NJ. 1994. A palaeolimnological test of the influence of Norway Spruce (Picea abies) immigration on lake water acidity. Holocene 4:132–40.

    Article  Google Scholar 

  • Laing TE, Ruhland KM, Smol JP. 1999. Past environmental and climatic changes related to tree-line shifts inferred from fossil diatoms from a lake near the Lena River Delta, Siberia. Holocene 9:547–57.

    Article  Google Scholar 

  • Laing TE, Smol JP. 2000. Factors influencing diatom distributions in circumpolar treeline lakes of northern Russia. J Phycol 36:1035–48.

    Article  CAS  Google Scholar 

  • Leavitt PR. 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J Paleolimnol 9:109–27.

    Article  Google Scholar 

  • Leavitt PR, Cumming BF, Smol JP, Reasoner M, Pienitz R, Hodgson DA. 2003. Climatic control of ultraviolet radiation effects on lakes. Limnol Oceanogr 48:2062–9.

    Article  Google Scholar 

  • Leavitt PR, Vinebrooke RD, Donald DB, Smol JP, Schindler DW. 1997. Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature 388:457–9.

    Article  CAS  Google Scholar 

  • Leng MJ, Anderson NJ. 2003. Isotopic variation in modern lakewaters from western Greenland. Holocene 13:335–42.

    Article  Google Scholar 

  • Leng MJ, Marshall JD. 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Sci Rev 23:811–31.

    Article  Google Scholar 

  • Levesque AJ, Cwynar LC, Walker IR. 1997. Exceptionally steep north south gradients in lake temperatures during the last deglaciation. Nature 385:423–6.

    Article  CAS  Google Scholar 

  • Liboriussen L, Jeppesen E. 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biol 48:418–31.

    Article  Google Scholar 

  • Lotter AF, Bigler C. 2000. Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquatic Sci 62:125–41.

    Article  Google Scholar 

  • Lotter AF, Birks HJB. 1997. The separation of the influence of nutrients and climate on the varve time-series of Baldeggersee, Switzerland. Aquat Sci 59:362–75.

    Article  Google Scholar 

  • Lotter AF, Birks HJB. 2003. The Holocene palaeolimnology of Sagistalsee and its environmental history—a synthesis. J Paleolimnol 30:333–42.

    Article  Google Scholar 

  • Lotter AF, Birks HJB, Zolitschka B. 1995. Late-glacial pollen and diatom changes in response to 2 different environmental perturbations—volcanic-eruption and younger dryas cooling. J Paleolimnol 14:23–47.

    Article  Google Scholar 

  • Mackereth FJH. 1966. Some chemical observations of post-glacial lake sediments. Philos Trans R Soc Lond Ser B-Biol Sci 250:165–213.

    Article  CAS  Google Scholar 

  • McGowan S, Leavit PR, Hall RI, Anderson NJ, Jeppesen E, Odgaard BV. 2005. Controls of algal abundance and community composition during ecosystem state change. Ecology 86:2200–11.

    Article  Google Scholar 

  • McGowan S, Ryves DB, Anderson NJ. 2003. Holocene records of effective precipitation in West Greenland. Holocene 13:239–49.

    Article  Google Scholar 

  • Michelutti N, Douglas MSV, Wolfe AP, Smol JP. 2006. Heightened sensitivity of a poorly buffered high arctic lake to late-Holocene climatic change. Quaternary Res 65:421–30.

    Article  Google Scholar 

  • Pienitz R, Smol JP, Last WM, Leavitt PR, Cumming BF. 2000. Multi-proxy Holocene palaeoclimatic record from a saline lake in the Canadian Subarctic. Holocene 10:673–86.

    Article  Google Scholar 

  • Pienitz R, Smol JP, MacDonald GM. 1999. Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arct Antarct Alp Res 31:82–93.

    Article  Google Scholar 

  • Rasmussen P, Bradshaw EG. 2005. Mid- to late-Holocene land-use change and lake development at Dallund So, Denmark: study aims, natural and cultural setting, chronology and soil erosion history. Holocene 15:1105–15.

    Article  Google Scholar 

  • Renberg I. 1981. Improved methods for sampling, photographing and varve-counting of varved lake-sediments. Boreas 10:255–8.

    Article  Google Scholar 

  • Renberg I. 1990a. A 12,600 Year Perspective of the Acidification of Lilla-Oresjon, Southwest Sweden. Philos Trans R Soc Lond Ser B-Biol Sci 327:357–61.

    Article  Google Scholar 

  • Renberg I. 1990b. A procedure for preparing large sets of diatom slides from sediment cores. J Paleolimnol 4:87–90.

    Article  Google Scholar 

  • Renberg I. 1991. The HON-Kajak sediment corer. J Paleolimnol 6:167–70.

    Google Scholar 

  • Renberg I, Brodin YW, Cronberg G, Eldaoushy F, Oldfield F, Rippey B, Sandoy S, Wallin JE, Wik M. 1990. Recent acidification and biological changes in Lilla-Oresjon, Southwest Sweden, and the relation to atmospheric-pollution and land-use history. Philos Trans R Soc Lond Ser B-Biol Sci 327:391–6.

    Article  Google Scholar 

  • Renberg I, Korsman T, Anderson NJ. 1993. A temporal perspective of lake acidification in Sweden. Ambio 22:264–71.

    Google Scholar 

  • Ryves DB, McGowan S, Anderson NJ. 2002. Development and evaluation of a diatom-conductivity model from lakes in West Greenland. Freshwater Biol 47:995–1014.

    Article  Google Scholar 

  • Schindler DW. 1977. Evolution of phosphorus limitation in lakes. Science 195:260–62.

    Article  PubMed  CAS  Google Scholar 

  • Schnell ØA, Rieradevall M, Granados I, Hanssen O. 1999. A chironomid taxa codingsystem for use in ecological and palaeo-ecological databases. Project Manual, Annex B. NIVA Report SNO 3710-97, NIVA, Oslo

  • Sommaruga-Wograth S, Koinig KA, Schmidt R, Sommaruga R, Tessadri R, Psenner R. 1997. Temperature effects on the acidity of remote alpine lakes. Nature 387:64–7.

    Article  CAS  Google Scholar 

  • Sorvari S, Korhola A, Thompson R. 2002. Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biology 8:171–81.

    Article  Google Scholar 

  • Straile D, Adrian R. 2000. The North Atlantic Oscillation and plankton dynamics in two European lakes—two variations on a general theme. Glob Change Biol 6:663–70.

    Article  Google Scholar 

  • Stuiver M, Reimer PJ. 1993. Extended C-14 data-base and revised calib 3.0 C-14 age calibration program. Radiocarbon 35:215–30.

    Google Scholar 

  • Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, Van der Plicht J, Spurk M. 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal. BP. Radiocarbon 40:1041–83.

    CAS  Google Scholar 

  • ter Braak CJF, Prentice IC. 1988. A theory of gradient analysis. Adv Ecol Res 18:271–317.

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P. 2002. Canoco for Windows 4.5. Wageningen: Centre for Biometry

  • Vadeboncoeur Y, Jeppesen E, Vander Zanden MJ, Schierup HH, Christoffersen K, Lodge DM. 2003. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnol Oceanogr 48:1408–18.

    Article  Google Scholar 

  • Vadeboncoeur Y, Vander Zanden MJ, Lodge DM. 2002. Putting the lake back together: Reintegrating benthic pathways into lake food web models. Bioscience 52:44–54.

    Article  Google Scholar 

  • van Tatentove FGM, van der Meer JJM, Koster RD. 1996. Implications for deglaciation chronology from new AMS age determinations in central West Greenland. Quaternary Res 45:245–53.

    Article  Google Scholar 

  • Velle G, Brooks SJ, Birks HJB, Wilassen E. 2005. Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quaternary Sci Rev 24:1429–62.

    Article  Google Scholar 

  • Willemse NW. 2002. Holocene sedimentation history of the shallow Kangerlussuaq lakes, West Greenland. Meddelelser om Grønland, Geoscience 41:1–48.

    Google Scholar 

  • Williams WD. 1991. Comments on the so-called salt lakes of Greenland. Hydrobiologia 210:67–74.

    CAS  Google Scholar 

  • Wolfe AP. 2002. Climate modulates the acidity of Arctic lakes on millennial time scales. Geology 30:215–8.

    Article  Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjornland T, Repeta D, Welschmeyer N. 1991. Improved Hplc method for the analysis of chlorophylls and carotenoids from marine-phytoplankton. Mar Ecol-Prog Series 77:183–96.

    Article  CAS  Google Scholar 

  • Wrona FJ, Prowse TD, Reist D, Beamish R, Gibson JJ, Hobbie J, Jeppesen E, King J, Koeck G, Korhola A, Levesque L, Macdonald R, Power M, Skvortsov V, Vincent W, Clarke R, Dempson B, Lean D, Lehtonen H, Perin S, Pienitz R, Rautio M, Smol J, Tallman R, Zhulidov A. 2005. Freshwater ecosystems and fisheries. ACIA: Arctic Climate Impact Assessment. New York: Cambridge University Press. pp 354–452

Download references

Acknowledgments

Fieldwork was undertaken with financial assistance of the Geological Survey of Denmark & Greenland (GEUS), Danish Natural Science Research Council (SNF), NERC and the Commission for Scientific Research in Greenland. Fieldwork assistance was provided by Ingemar Renberg, Amy Whittle (née Clarke) and Ole Bennike. We thank two anonymous reviewers for detailed and helpful comments on the manuscript, and Mark Szegner (Department of Geography, Loughborough University) for drafting Figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Ryves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, N.J., Brodersen, K.P., Ryves, D.B. et al. Climate Versus In-Lake Processes as Controls on the Development of Community Structure in a Low-Arctic Lake (South-West Greenland). Ecosystems 11, 307–324 (2008). https://doi.org/10.1007/s10021-007-9123-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-007-9123-y

Keywords

Navigation