Skip to main content
Log in

Differential capacitance and electrochemical impedance study of surfactant adsorption on polycrystalline Ni electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The adsorption of neutral organophosphorous compounds on a charged polycrystalline Ni electrode is studied by differential capacitance and impedance measurements in methanol solutions. Analysis of capacitance measurements reveals that tributylphosphine oxide, tri(n)octylphosphine oxide, and triphenylphosphine follow Langmuir adsorption isotherm. Saturation capacitance C sat, potential of maximum adsorption E max, limiting surface concentration Γ max, and standard Gibbs energy of adsorption ΔG omax at E max are determined. The cathodic reduction of (NiOCH3)ads film formed on Ni surface at positive potentials, introducing a faradaic contribution in addition to the electrostatic charging of the interface, is supported by linear sweep voltammetric and impedance measurements. High values of electrode coverage and strong depression of faradaic currents are attained, indicating that these adsorbates may be suitable as corrosion inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Horanyi E, Rizmayer EM (1984) J Electroanal Chem 180:97–108

    Article  CAS  Google Scholar 

  2. Zhou A, Xie N (1999) J Colloid Interface Sci 220:281–287

    Article  CAS  Google Scholar 

  3. Norton PR, Tapping RL (1976) Chem Phys Lett 38:207–212

    Article  CAS  Google Scholar 

  4. Cohen M, Merrill RP (1990) Langmuir 6:1282–1288

    Article  CAS  Google Scholar 

  5. Kwon H, Gewirth AA (2007) J Electrochem Soc 154:577–583

    Article  Google Scholar 

  6. Arvia AJ, Posadas D (1975) In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements, vol. 3. Marcel Dekker, New York

  7. Inzelt G, Horanyi G (2006) In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol. 7b. Inorganic chemistry. The Nickel Group, Wiley-VCH

  8. Bockris JO’M, Argade SD, Gileadi E (1969) Electrochim Acta 14:1259–1283

    Article  CAS  Google Scholar 

  9. Devanathan MAV, Ramakrishnaiah K (1973) Electrochim Acta 18:259–264

    Article  CAS  Google Scholar 

  10. Bockris JO’M, Potter EC (1952) J Chem Phys 20:614–628

    Article  CAS  Google Scholar 

  11. Anastopoulos AG, Moumtzis I (1990) J Electroanal Chem 294:143–150

    Article  CAS  Google Scholar 

  12. Nikitas P, Anastopoulos AG, Jannakoudakis D (1983) J Electroanal Chem 143:361–374

    Article  CAS  Google Scholar 

  13. Anastopoulos AG (1996) Electrochim Acta 41:2537–2544

    Article  CAS  Google Scholar 

  14. Anastopoulos AG, Paschalidou M, Papoutsis AD (2014) J Electroanal Chem 720–712:52–57

    Article  Google Scholar 

  15. Nikitas P, Anastopoulos AG, Jannakoudakis D (1983) J Electroanal Chem 145:407–421

    Article  CAS  Google Scholar 

  16. Anastopoulos AG, Christodoulou A, Jannakoudakis D (1983) Z Phys Chem NF 137:231–246

    Article  CAS  Google Scholar 

  17. Anastopoulos AG, Christodoulou A, Moumtzis I (1988) Can J Chem 66:1053–1058

    Article  CAS  Google Scholar 

  18. Bozatzidis A, Anastopoulos AG, Laopoulos T (2007) Electroanalysis 19:1711–1718

    Article  CAS  Google Scholar 

  19. Trasatti S (1971) J Electroanal Chem 33:351–378

    Article  CAS  Google Scholar 

  20. Medway SL, Lucas CA, Kowal A, Nichols RJ, Johnson D (2006) J Electroanal Chem 587:172–181

    Article  CAS  Google Scholar 

  21. Miao Y, Ouyang L, Zhou S, Xu L, Yang Z, Xiao M, Ouyang R (2014) Biosens Bioelectron 53:428–439

    Article  CAS  Google Scholar 

  22. Banas J, Stypula B, Banas K, Swiatowska-Mroviecka J, Starowicz M, Lelek-Borkowska U (2009) J Solid State Electrochem 13:1669–1679

    Article  CAS  Google Scholar 

  23. Shvarts E, Damaskin BB, Frumkin AN (1962) Rus J Phys Chem 36:1311–1315

    Article  Google Scholar 

  24. Frumkin AN (1967) J Res Inst Catal Hokkaido Univ 15:61–83

    CAS  Google Scholar 

  25. Santhanam KSV, Bard AJ (1968) J Am Chem Soc 90:1118–1122

    Article  CAS  Google Scholar 

  26. Damaskin BB, Petrii O, Batrakov V (1971) Adsorption of organic compounds on electrodes. Plenum Press, New York

    Book  Google Scholar 

  27. Danilov F, Obraztsov V, Kapitonov A (2003) J Electroanal Chem 552:69–76

    Article  CAS  Google Scholar 

  28. Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer, New York

    Book  Google Scholar 

  29. Ragoisha GA (2015) Electroanalysis 27:855–863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Research Committee of Aristotle University of Thessaloniki, project number 89350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Anastopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anastopoulos, A.G., Papoutsis, A.D. & Papaderakis, A.A. Differential capacitance and electrochemical impedance study of surfactant adsorption on polycrystalline Ni electrode. J Solid State Electrochem 19, 2369–2377 (2015). https://doi.org/10.1007/s10008-015-2879-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2879-7

Keywords

Navigation