Skip to main content

Advertisement

Log in

Enhanced cycling performance of a high-energy and low-cost lithium–sulfur battery with a sulfur/hardwood charcoal composite cathode material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium–sulfur battery is an attractive candidate for advanced energy storage devices due to its high specific energy of 2600 Wh kg−1 arising from the high theoretical specific capacity (1675 mAh g−1) of the sulfur cathode. However, short cycle life and low cycling efficiency are still the main obstacles preventing the practical development of this promising battery system. In this work, we show that a low-cost Li/S cell employing an activated hardwood charcoal–sulfur (S–AHC) nanocomposite cathode can be operated for more than 300 cycles while still maintaining high specific capacity (600 mAh g−1) and coulombic efficiency of 97 %, achieved by a new formulation of liquid electrolyte containing a fluorinated solvent. Such an improved capacity retention and cycle life, as compared to its conventional counterparts, prove that active mass lost via polysulfide dissolution can be effectively inhibited by utilization of this liquid electrolyte solution. Considering these results, we believe that the Li/S battery consisted of this composite cathode and the liquid electrolyte may be proposed as a promising candidate for low-cost energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. She ZW, Li W, Cha JJ, Zhang G, Yang Y, McDowell MT, Hsu PC, Cui Y (2013) Nat Commun 4:1–6

    Google Scholar 

  2. Cai K, Song MK, Cairns EJ, Zhang Y (2012) Nano Lett 12:6474–6479

    Article  CAS  Google Scholar 

  3. Li GC, Li GR, Ye SH, Gao XP (2012) Adv Energy Mater 2:1238–1245

    Article  CAS  Google Scholar 

  4. Jeddi K, Ghaznavi M, Chen P (2013) J Mater Chem 1:2769–2772

    Article  CAS  Google Scholar 

  5. Jeddi K, Zhao Y, Zhang Y, Konarov A, Chen P (2013) J Electrochem Soc 160:A1052–A1060

    Article  CAS  Google Scholar 

  6. Ji X, Nazar LF (2010) J Mater Chem 20:9821–9826

    Article  CAS  Google Scholar 

  7. Lin F, Wang J, Jia H, Monroe CW, Yang J, NuLi Y (2013) J Power Sources 223:18–22

    Article  CAS  Google Scholar 

  8. Ji X, Evers S, Black R, Nazar LF (2011) Nat Commun 2:325–332

    Article  Google Scholar 

  9. Yin L, Wang J, Yang J, Nuli Y (2011) J Mater Chem 21:6807–6810

    Article  CAS  Google Scholar 

  10. Ji X, Lee KT, Nazar LF (2009) Nat Mater 8:500–506

    Article  CAS  Google Scholar 

  11. Yuan L, Yuan H, Qiu X, Chen L, Zhu W (2009) J Power Sources 189:1141–1146

    Article  CAS  Google Scholar 

  12. Wang JZ, Lu L, Choucair M, Stride JA, Xu X, Liu HK (2011) J Power Sources 196:7030–7034

    Article  CAS  Google Scholar 

  13. He G, Ji X, Nazar LF (2011) Energy Environ Sci 4:2878–2883

    Article  CAS  Google Scholar 

  14. Zhang B, Qin X, Li GR, Gao XP (2010) Energy Environ Sci 3:1531–1537

    Article  CAS  Google Scholar 

  15. Fanous J, Wegner M, Grimminger J, Andresen A, Buchmeiser MR (2011) Chem Mater 23:5024–5028

    Article  CAS  Google Scholar 

  16. Wang JL, Yang J, Wan CR, Du K, Xie JY, Xu NX (2013) Adv Funct Mater 13:487–492

    Article  Google Scholar 

  17. Chao ZS, Lan Z, Yu JH (2011) J Power Sources 196:10263–10266

    Article  Google Scholar 

  18. Fu YZ, Manthiram A (2012) RSC Adv 2:5927–5929

    Article  CAS  Google Scholar 

  19. Zhang SS (2013) J Power Sources 231:153–162

    Article  CAS  Google Scholar 

  20. Rao MM, Song XY, Cairns EJ (2012) J Power Sources 205:474–478

    Article  CAS  Google Scholar 

  21. Guo JC, Xu YH, Wang CS (2011) Nano Lett 11:4288–4294

    Article  CAS  Google Scholar 

  22. Wu F, Wu SX, Chen RJ, Chen S, Wang GQ (2009) Chin Chem Lett 20:1255–1258

    Article  CAS  Google Scholar 

  23. Ryu HS, Park JW, Park J, Ahn JP, Kim KW, Ahn JH, Nam TH, Wang G, Ahn HJ (2013) J Mater Chem A1:1573–1578

    Article  Google Scholar 

  24. Azimi N, Weng W, Takoudis C, Zhang Z (2013) Electrochem Commun 37:96–99

    Article  CAS  Google Scholar 

  25. Gordin ML, Dai F, Chen S, Xu T, Song J, Tang D, Azimi N, Zhang Z, Wang D (2014) ACS Appl Mater Interfaces 6:8006–8010

    Article  CAS  Google Scholar 

  26. Jeddi K, Sarikhani K, Qazvini NT, Chen P (2014) J Power Sources 245:656–662

    Article  CAS  Google Scholar 

  27. Yang Z, Guo J, Das SK, Yu Y, Zhou Z, Abruna HD, Archer LA (2013) J Mater Chem 1:1433–1440

    Article  CAS  Google Scholar 

  28. Ghaznavi M, Chen P (2014) J Power Sources 257:394–401

    Article  CAS  Google Scholar 

  29. Barsoukov E, Macdonald JR, “Impedance Spectroscopy; Theory, Experiment, and Application” second edition, ISBN:0-471-64749-7

Download references

Acknowledgments

This research was financially supported by Positec, the Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Foundation for Innovation (CFI), and the Canada Research Chairs (CRC) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeddi, K., Sarikhani, K., Ghaznavi, M. et al. Enhanced cycling performance of a high-energy and low-cost lithium–sulfur battery with a sulfur/hardwood charcoal composite cathode material. J Solid State Electrochem 19, 1161–1169 (2015). https://doi.org/10.1007/s10008-014-2721-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2721-7

Keywords

Navigation