Skip to main content

Advertisement

Log in

A novel synthesis of (3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole), alternating polymer formation, characterization, and capacitance measurements

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, (3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole) (EDOTVBCz) comonomer was chemically synthesized and characterized by Fourier transform infrared (FTIR), proton nuclear magnetic resonance, and carbon nuclear magnetic resonance spectroscopy. EDOTVBCz was electrocoated on glassy carbon electrode (GCE) in various initial molar concentrations ([EDOTVBCz]0 = 1.0, 1.5, 2.0, and 3.0) in 0.1 M lithium perchlorate (LiClO4)/acetonitrile (CH3CN). P(EDOTVBCz)/GCE was characterized by cyclic voltammetry, FTIR reflectance-attenuated total reflection spectroscopy, scanning electron microscopy–energy dispersive X-ray analysis, atomic force microscopy, and electrochemical impedance spectroscopy (EIS). EIS was used to determine the capacitive behaviors of modified GCE via Nyquist, Bode magnitude, Bode phase, and admittance plots. The highest low-frequency capacitance value was obtained as C LF = ∼2.35 mF cm−2 for [EDOTVBCz]0 = 3.0 mM. Double-layer capacitance of the polymer/electrolyte system was calculated as C dl = ∼2.78 mF cm−2 for [EDOTVBCz]0 = 1.0 and 3.0 mM. The maximum phase angle was obtained as θ = ∼76.7o for [EDOTVBCz]0 = 1.0, 1.5, 2.0, and 3.0 mM at the frequency of 20.6 Hz. AC impedance spectra of P(EDOTVBCz)/LiClO4/CH3CN was obtained by performing electrical equivalent circuit model of R(Q(R(CR))) with linear Kramers–Kronig test.

SEM-EDX analysis of P(EDOTVBCz)/CFME EDX point analysis inset: SEM point analysis, [EDOTVBCz]0 = 3 mM. Chronoamperometric method of constant potential at 1.6 V, 300 s in 0.1 M LiClO4/CH3CN

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Christopher LH, Dennis ET, Seth CR (2010) J Phys Chem B 114:5275–5282

    Article  Google Scholar 

  2. Beaujuge PM, Amb Chad M, Reynolds JR (2010) Acc Chem Res 43:1396–1407

    Article  CAS  Google Scholar 

  3. Roncali J (1992) Chem Rev 92:711–738

    Article  CAS  Google Scholar 

  4. McCullough RD (1998) Adv Mater 10:93–116

    Article  CAS  Google Scholar 

  5. Koyuncu FB, Koyuncu S, Ozdemir E (2011) Org Electron 12:1701–1710

    Article  CAS  Google Scholar 

  6. Zhang K, Tieke B, Forgie JC, Skabara PJ (2009) Macromol. Rapid Comm 30:1834–1840

    Article  CAS  Google Scholar 

  7. Roncali J (1999) J Mater Chem 9:1875–1893

    Article  CAS  Google Scholar 

  8. Naudin E, Ho HA, Branchaud S, Breau L, Bélanger D (2002) J Phys Chem B 106:10585–10593

    Article  CAS  Google Scholar 

  9. Beaujuge PM, Ellinger S, Reynolds JR (2008) Nat Mater 7:795–799

    Article  CAS  Google Scholar 

  10. Chang CH, Wang KL, Jiang JC, Liawa DJ, Lee KR, Lai JY, Lai KH (2010) Polymer 51:4493–4502

    Article  CAS  Google Scholar 

  11. Goto H, Kawabata K (2011) Polym Chem 2:1098–1106

    Article  CAS  Google Scholar 

  12. Goto H (2012) J Polym Sci Polym Chem 50:622–628

    Article  CAS  Google Scholar 

  13. Tam PD, Van Hieu N (2011) Appl Surf Sci 257:9817–9824

    Article  CAS  Google Scholar 

  14. Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos E, Kumar A (2011) J Power Sources 196:4102–4108

    Article  Google Scholar 

  15. Zou J, Yip HL, Hau SK, Jen AKY (2010) Appl Phys Lett 96:203301

    Article  Google Scholar 

  16. Ma C, Xu Y, Zhang C, Xu Y, Xiang W, Ouyang M (2009) J Electroanal Chem 634:31–34

    Article  CAS  Google Scholar 

  17. Bushueva AY, Shklyaeva EV, Abashev GG (2009) Mendeleev Commun 19:329–331

    Article  CAS  Google Scholar 

  18. Borrelli DC, Barr MC, Bulović V, Gleason KK (2012) Sol Energ Mat Sol C 99:190–196

    Article  CAS  Google Scholar 

  19. Fu C, Zhou H, Liu R, Huang Z, Chen J, Kuang Y (2012) Mater Chem Phys 132:596–600

    Article  CAS  Google Scholar 

  20. Anglin TC, Speros JC, Massari AM (2011) J Phys Chem C 115:16027–16036

    Article  CAS  Google Scholar 

  21. Roncali J (1997) Chem Rev 97:173–205

    Article  CAS  Google Scholar 

  22. Granstrom M (1997) Polym Advan Technol 8:424–430

    Article  CAS  Google Scholar 

  23. Higgins TB, Mirkin CA (1998) Chem Mater 10:1589–1595

    Article  CAS  Google Scholar 

  24. Jadamiec M, Lapkowski M, Matlengiewicz M, Brembilla A, Henry B, Rodehüser L (2007) Electrochim Acta 52:6146–6154

    Article  CAS  Google Scholar 

  25. Chan HSO, Ng SC (1998) Prog Polym Sci 23:1167–1231

    Article  CAS  Google Scholar 

  26. Barbarella G, Mellucci M, Sotgiu G (2005) Adv Mater 17:1581–1593

    Article  CAS  Google Scholar 

  27. Jen KY, Miller GG, Elsenbaumer RL (1986) J Chem Soc Chem Commun 17:1346–1347

    Article  Google Scholar 

  28. Armelin E, Bertran O, Estrany F, Salvatella R, Alemán C (2009) Eur Polym J 45:2211–2221

    Article  CAS  Google Scholar 

  29. Scully JR, Silverman DC, Kendig MW (1993) Electrochemical Impedance: Analysis and Interpretation. ASTM, Philadelphia

    Book  Google Scholar 

  30. Darowicki K (2004) Kawula. J Electrochim Acta 49:4829–4839

    Article  CAS  Google Scholar 

  31. Baldissera AF, Freitas DB, Ferreira CA (2010) Mater Corros 61:790–801

    Article  CAS  Google Scholar 

  32. Wang X, Bernard MC, Deslouis C, Joiret S, Rousseau P (2010) Electrochim Acta 55:6299–6307

    Article  CAS  Google Scholar 

  33. Jannakoudakis PD (1994) Synth Met 68:17–31

    Article  CAS  Google Scholar 

  34. Ferloni P, Mastragostino M, Meneghello L (1996) Electrochim Acta 41:27–33

    Article  CAS  Google Scholar 

  35. Simoes FR, Pocrifka LA, Marchesi LFQP, Pereira EC (2011) J Phys Chem B 115:11092–11097

    Article  CAS  Google Scholar 

  36. Agrisuelas J, Gabrielli C, Garcia-Jareño JJ, Gimenez-Romero D, Perrot H, Vicente F (2007) J Phys Chem C 111:14230–14237

    Article  CAS  Google Scholar 

  37. Amemiya T, Hashimoto K, Fujishima A (1993) J Phys Chem 97:4187–4191

    Article  CAS  Google Scholar 

  38. Agrisuelas J, Garcia-Jaréno JJ, Gimenez-Romero D, Vicente F (2010) Electrochim Acta 55:6128–6135

    Article  CAS  Google Scholar 

  39. Ates M, Uludag N (2010) Fiber Polym 11:331–337

    Article  CAS  Google Scholar 

  40. Papez V, Inganas O, Cimrova V, Nespurek S (1991) J Electroanal Chem 282:123–139

    Article  Google Scholar 

  41. Ates M, Uludag N, Sarac AS (2011) Mater Chem Phys 127:120–127

    Article  CAS  Google Scholar 

  42. Sarac AS, Bismarck A, Kumru ME, Springer J (2011) Synth Met 123:411–423

    Article  Google Scholar 

  43. Sarac AS, Sezgin S, Ates M, Turhan CM (2009) Adv Polym Technol 28:120–130

    Article  CAS  Google Scholar 

  44. Ates M, Sarac AS (2009) J Appl Electrochem 39:2043–2048

    Article  CAS  Google Scholar 

  45. Sarac AS, Gencturk A, Schulz B, Gilsing HD, Serantoni M (2007) J Nanosci Nanotechnol 7:3543–3552

    Article  CAS  Google Scholar 

  46. Ates M, Uludag N, Sarac AS (2011) Fiber Polym 12:8–14

    Article  CAS  Google Scholar 

  47. Ates M, Uludag N (2011) Fiber Polym 12:296–302

    Article  CAS  Google Scholar 

  48. Ates M (2009) Int J Electrochem Sci 4:980–992

    Google Scholar 

  49. Hu JM, Zhang JQ, Cao CN, Hsing IM (2004) Electrochim Acta 49:5227–5234

    Article  CAS  Google Scholar 

  50. Ates M, Uludag N, Karazehir T (2012) J Solid State Electrochem 16:2639–2649

    Article  CAS  Google Scholar 

  51. Brug GJ (1984) Van den eden ALG, Sluyters-Rehbach M, Sluyters JH. J Electroanal Chem 176:275–295

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work supported by The Scientific & Technological Council of Turkey (TUBITAK)-TBAG-110T791 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ates, M., Uludag, N., Karazehir, T. et al. A novel synthesis of (3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole), alternating polymer formation, characterization, and capacitance measurements. J Solid State Electrochem 17, 2417–2427 (2013). https://doi.org/10.1007/s10008-013-2117-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2117-0

Keywords

Navigation