Skip to main content
Log in

A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

CuO nanotube film and Cu2O film were anodically grown on Cu substrates through direct oxidation and electrochemical anodic reduction, respectively. The microstructure and morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The obtained CuO is monoclinic crystallization, and the diameters of tubes are about 100–300 nm, while the as-prepared Cu2O has a typical structure with a space group Pn3m and consists of compact faceted crystals. As anodes for Li-ion batteries, the electrochemical properties of the nanostructured CuO and Cu2O films were investigated by cyclic voltammogram and galvanostatic charge–discharge tests. An “apparent charge capacity” was introduced to describe the electrochemical performance. The initial apparent discharge capacity of the CuO and Cu2O film electrode reached to 911 and 570 mAh/g, respectively. Although they exhibited large irreversible capacities attributed to the formation of solid electrolyte interface (SEI) during the first cycle, the CuO nanotube film and Cu2O film had good cyclability and delivered the apparent capacity of 417 and 219 mAh/g after 30 cycles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guy S, Philippe B, Michel B (2004) J Power Sources 127:65

    Article  Google Scholar 

  2. Lee YT, Yoon CS, Sun YK (2005) J Power Sources 139:230

    Article  CAS  Google Scholar 

  3. Yang Z, Wu H (2001) Solid State Ion 143:173

    Article  CAS  Google Scholar 

  4. Wang GX, Ahn JH, Yao J, Bewlay S, Liu HK (2004) Electrochem Commun 6:689

    Article  CAS  Google Scholar 

  5. Shi DQ, Tu JP, Yuan YF, Wu HM, Li Y, Zhao XB (2006) Electrochem Commun 8:1610

    Article  CAS  Google Scholar 

  6. Idota Y, Kubota T, Mastufuji A, Maekawa Y, Miyasaka T (1997) Science 276:1395

    Article  CAS  Google Scholar 

  7. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496

    Article  CAS  Google Scholar 

  8. Wang GX, Chen Y, Konstantinov K, Lindsay M, Liu HK, Dou SX (2002) J Power Sources 109:142

    Article  CAS  Google Scholar 

  9. Badway F, Plitz I, Grugeon S, Laruelle S, Dollé M, Gozdz AS, Tarascon JM (2002) Electrochem Solid State Lett 4:A115

    Article  Google Scholar 

  10. Larcher D, Masquelier M, Bonnin CD, Chabre Y, Masson V, Leriche JB, Tarascon JM (2003) J Electrochem Soc 150:A133

    Article  CAS  Google Scholar 

  11. Obrovac MN, Dunlap RA, Sanderson RJ, Dahn JR (2001) J Electrochem Soc 148:A576

    Article  CAS  Google Scholar 

  12. Zhang WX, Ding SX, Yang ZH, Liu AP, Qian YT, Tang SP, Yang SH (2006) J Cryst Growth 291:479

    Article  CAS  Google Scholar 

  13. Biestek T, Weber J (1976) Electrolytic and chemical conversion coating. Portcullis Press, London

    Google Scholar 

  14. Jongh PE, Vanmaekelbergh D, Kelly JJ (1999) Chem Mater 11:3512

    Article  Google Scholar 

  15. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston

    Google Scholar 

  16. Pourbaix M (1973) Lectures on electrochemical corrision. Plenum Press, New York

    Google Scholar 

  17. Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) J Electrochem Soc 148:A285

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. P. Tu or Y. Z. Yang.

Additional information

Contribution to ICMAT 2007, Symposium K: Nanostructured and bulk materials for electrochemical power sources, July 1–6, 2007, Singapore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, J.Y., Tu, J.P., Huang, X.H. et al. A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries. J Solid State Electrochem 12, 941–945 (2008). https://doi.org/10.1007/s10008-007-0422-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0422-1

Keywords

Navigation