Skip to main content
Log in

An investigation of folic acid–protein association sites and the effect of this association on folic acid self-assembly

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The contribution of folic acid (FA)–tryptophan interactions to FA–protein association was investigated in the context of using FA as a drug carrier in protein delivery systems. Bovine serum albumin (BSA) and indolicidin were used as model proteins in the study. The FA-BSA complex was characterized by using the Bradford reagent to identify the impact of FA-BSA association on BSA–dye reagent interactions. UV-visible spectroscopic analysis of the FA–BSA mixture showed that the absorbance maximum of BSA–dye reagent occurred at 595 nm, even after the association of FA with BSA. This confirms that protonated amino acid groups of the protein are not involved in FA–BSA association. Moreover, molecular dynamics (MD) simulation confirmed the presence of an associative interaction between aromatic moieties in FA and tryptophan moieties in the indolicidin molecule, which disrupted FA self-assembly. An X-ray diffraction (XRD) study showed that there was limited disruption of FA self-assembly after the addition of BSA or tryptophan. This suggests that FA and BSA are compatible and associate with each other.

Mechanism of folic acid and protein association

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5
Fig. 6
Fig. 7a–b
Fig. 8a–b
Fig. 9a–b

Similar content being viewed by others

Abbreviations

Arg:

Arginine

BSA:

Bovine serum albumin

FA:

Folic acid

Ile:

Isoleucine

Leu:

Leucine

Lys:

Lysine

MD:

Molecular dynamics

Pro:

Proline

RDF:

Radial distribution function

Trp:

Tryptophan

XRD:

X-ray diffraction

θ :

Angle

Å:

Angstrom

References

  1. Mignani S, El Kazzouli S, Bousmina M, Majoral JP (2013) Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 65:1316–1330. doi:10.1016/j.addr.2013.01.001

  2. Carino GP, Jacob JS, Mathiowitz E (2000) Nanosphere based oral insulin delivery. J Control Release 65:261–269. doi:10.1016/S0168-3659(99)00247-3

    Article  CAS  Google Scholar 

  3. Carino GP, Mathiowitz E (1999) Oral insulin delivery. Adv Drug Deliv Rev 35:249–257. doi:10.1016/S0169-409X(98)00075-1

    Article  CAS  Google Scholar 

  4. Des Rieux A, Fievez V, Garinot M et al (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27. doi:10.1016/j.jconrel.2006.08.013

  5. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surfaces B Biointerfaces 75:1–18. doi:10.1016/j.colsurfb.2009.09.001

    Article  CAS  Google Scholar 

  6. Mo R, Jiang T, Di J et al (2014) Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 43:3595–3629. doi:10.1039/C3CS60436E

    Article  CAS  Google Scholar 

  7. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223. doi:10.1016/j.yexmp.2008.12.004

    Article  CAS  Google Scholar 

  8. Yun Y, Cho YW, Park K (2013) Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 65:822–832. doi:10.1016/j.addr.2012.10.007

  9. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28. doi:10.1016/j.jconrel.2004.08.010

    Article  CAS  Google Scholar 

  10. Misra R, Katyal H, Mohanty S (2014) Controlled release of folic acid through liquid-crystalline folate nanoparticles. Mater Sci Eng C 44:352–361. doi:10.1016/j.msec.2014.08.025

  11. Misra R, Lonare M, Gupta R, Mohanty S (2014) Engineering chromonic nanoparticles from liquid-crystalline folate solutions. Sci Adv Mater 6:835–843. doi:10.1166/sam.2014.1791

    Article  CAS  Google Scholar 

  12. Misra R, Mohanty S (2014) Sustained release of methotrexate through liquid-crystalline folate nanoparticles. J Mater Sci Mater Med 25:2095–2109. doi:10.1007/s10856-014-5257-6

  13. Misra R, Upadhyay M, Perumal V, Mohanty S (2015) In vitro control release, cytotoxicity assessment and cellular uptake of methotrexate loaded liquid-crystalline folate nanocarrier. Biomed Pharmacother 69:102–110. doi:10.1016/j.biopha.2014.11.012

    Article  CAS  Google Scholar 

  14. Choban E (2007) Method and apparatus for forming crosslinked chromonic nanoparticles. US Pat US20070243258 A1

  15. Mohanty S, Chou S-H, Brostrom M, Aguilera J (2006) Predictive modeling of self assembly of chromonics materials. Mol Simul 32:1179–1185. doi:10.1080/08927020601059919

    Article  CAS  Google Scholar 

  16. Bourassa P, Hasni I, Tajmir-Riahi HA (2011) Folic acid complexes with human and bovine serum albumins. Food Chem 129:1148–1155. doi:10.1016/j.foodchem.2011.05.094

    Article  CAS  Google Scholar 

  17. Jha NS, Kishore N (2011) Thermodynamic studies on the interaction of folic acid with bovine serum albumin. J Chem Thermodyn 43:814–821. doi:10.1016/j.jct.2010.12.024

    Article  CAS  Google Scholar 

  18. Fujimori E (1959) Interaction between pteridines and tryptophan. Proc Natl Acad Sci USA 45:133

  19. Patil O, Mohanty S (2015) MD Darshan. https://github.com/okpatil4u/MD-Darshan

  20. Ciuchi F, Di Nicola G, Franz H et al (1994) Self-recognition and self-assembly of folic acid salts: columnar liquid crystalline polymorphism and the column growth process. J Am Chem Soc 116:7064–7071. doi:10.1021/ja00095a008

  21. Motkar G, Lonare M, Patil O, Mohanty S (2013) Self-assembly of folic acid in aqueous media. AIChE J 59:1360–1368. doi:10.1002/aic.14066

    Article  CAS  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  23. Compton SJ, Jones CG (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 151:369–374. doi:10.1016/0003-2697

    Article  CAS  Google Scholar 

  24. Lpeza M, Imperialb S, Valderramaa R, Navarro S (1993) An improved Bradford protein assay for collagen proteins. Clin Chim Acta 220:91–100. doi:10.1016/0009-8981(93)90009-S

    Article  Google Scholar 

  25. Kamikawa Y, Nishii M, Kato T (2004) Self-assembly of folic acid derivatives: induction of supramolecular chirality by hierarchical chiral structures. Chem A Eur J 10:5942–5951. doi:10.1002/chem.200400424

  26. Li J, Li J, Jiao Y, Dong C (2014) Spectroscopic analysis and molecular modeling on the interaction of jatrorrhizine with human serum albumin (HSA). Spectrochim Acta Part A Mol Biomol Spectrosc 118:48–54. doi:10.1016/j.saa.2013.07.029

  27. Patil O, Mohanty S (2014) Why folates self-assemble: a simulation-based study. Mol Simul 78:1–10. doi:10.1080/08927022.2013.854890

    Google Scholar 

  28. Ladokhin AS, Selsted ME, White SH (1997) Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys J 72:794–805. doi:10.1016/S0006-3495(97)78713-7

    Article  CAS  Google Scholar 

  29. Off MK, Steindal AE, Porojnicu AC et al (2005) Ultraviolet photodegradation of folic acid. J Photochem Photobiol B Biol 80:47–55. doi:10.1016/j.jphotobiol.2005.03.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Department of Science and Technology, New Delhi, India for providing financial support under project RP02519. Support from the Council of Scientific and Industrial Research (CSIR) New Delhi, India for providing senior research fellowship (SRF) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanat Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Kalita, P., Patil, O. et al. An investigation of folic acid–protein association sites and the effect of this association on folic acid self-assembly. J Mol Model 21, 308 (2015). https://doi.org/10.1007/s00894-015-2847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2847-2

Keywords

Navigation