Skip to main content
Log in

Molecular dynamics study of the adsorption of anionic surfactant in a nonionic polymer brush

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The adsorption of the anionic surfactant, sodium dodecylsulfate (SDS) in poly(ethylene oxide) (PEO) brush was studied by molecular dynamics simulations. Our simulations revealed that surfactant can adsorb in polymer brush as micellar aggregates and the polymer would reside at the hydrocarbon-water interface of SDS micelles. This association between surfactant and polymer was mainly driven by the hydrophobic interaction between the polymer and surfactant tails. In the simulation, with the increasing of surfactant concentration, a plateau value representing saturated adsorption was observed. The height of polymer brush was mainly affected by the adsorbed surfactant at low grafting density of polymer; however, it was primarily controlled by the grafting density at high grafting density. Our conclusions at the molecular level were in close agreement with experiment about the adsorption of surfactant in polymer brushes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Currie EPK, Norde W, Stuart MAC (2003) Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties. Adv Colloid Interface Sci 100–102:205–265

    Article  Google Scholar 

  2. Mei Y, Sharma G, Lu Y, Ballauff M, Drechsler M, Irrgang T, Kempe R (2005) High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 21:12229–12234

    Article  CAS  Google Scholar 

  3. Zhang Z, Ma H, Hausner DB, Chilkoti A, Beebe TP (2005) Pretreatment of amphiphilic comb polymer surfaces dramatically affects protein adsorption. Biomacromolecules 6:3388–3396

    Article  CAS  Google Scholar 

  4. Zhou Y, Liedberg B, Gorochovceva N, Makuska R, Dedinaite A, Claesson PM (2007) Chitosan-N-poly(ethylene oxide) brush polymers for reduced nonspecific protein adsorption. J Colloid Interface Sci 305:62–71

    Article  CAS  Google Scholar 

  5. Elbert DL, Hubbell JA (1998) Self-assembly and steric stabilization at heterogeneous, biological surfaces using adsorbing block copolymers. Chem Biol 5:177–183

    Article  CAS  Google Scholar 

  6. Pettersson T, Naderi A, Makuska R, Claesson PM (2008) Lubrication properties of bottle-brush polyelectrolytes: an AFM study on the effect of side chain and charge density. Langmuir 24:3336–3347

    Article  CAS  Google Scholar 

  7. Yoshikawa J, Lewis JA (2009) Comb polymer architecture, ionic strength, and particle size effects on the BaTiO3 suspension stability. J Am Ceram Soc 92:S42–S49

    Article  CAS  Google Scholar 

  8. Konradi R, Rühe J (2005) Binding of oppositely charged surfactants to poly(methacrylic acid) brushes. Macromolecules 38:6140–6151

    Article  CAS  Google Scholar 

  9. Samokhina L, Schrinner M, Ballauff M (2007) Binding of oppositely charged surfactants to spherical polyelectrolyte brushes: a study by cryogenic transmission electron microscopy. Langmuir 23:3615–3619

    Article  CAS  Google Scholar 

  10. Cong Y, Gunari N, Zhang B, Janshoff A, Schmidt M (2009) Hierarchical structure formation of cylindrical brush polymer=surfactant complexes. Langmuir 25:6392–6397

    Article  CAS  Google Scholar 

  11. Péron N, Campbell RA, Nylander T (2008) Competitive adsorption of neutral comb polymers and sodium dodecyl sulfate at the air/water interface. J Phys Chem B 112:7410–7419

    Article  Google Scholar 

  12. Ishikubo A, Mays J, Tirrell M (2008) Behavior of cationic surfactants in poly(styrene sulfonate) brushes. Ind Eng Chem Res 47:6426–6433

    Article  CAS  Google Scholar 

  13. Linse P, Claesson PM (2009) Modeling of bottle-brush polymer adsorption onto mica and silica surfaces. Macromolecules 42:6310–6318

    Article  CAS  Google Scholar 

  14. Naderi A, Iruthayaraj J, Pettersson T, Makuska R, Claesson PM (2008) Effect of polymer architecture on the adsorption properties of a nonionic polymer. Langmuir 24:6676–6682

    Article  CAS  Google Scholar 

  15. Naderi A, Makuška R, Claesson PM (2008) Interactions between bottle-brush polyelectrolyte layers: effects of ionic strength and oppositely charged surfactant. J Colloid Interface Sci 323:191–202

    Article  CAS  Google Scholar 

  16. Vos WM, Biesheuvel PM, de Keizer A, Kleijn JM, Stuart MAC (2009) Adsorption of anionic surfactants in a nonionic polymer brush: experiments, comparison with mean-field theory, and implications for brush-particle interaction. Langmuir 25:9252–9261

    Article  Google Scholar 

  17. Zhou P, Brown W (1990) Static and dynamic properties of poly(ethylene oxide) in methanol. Macromolecules 23:11131–11139

    Google Scholar 

  18. Varga I, Mészáros R, Makuška R, Claesson PM, Gilányi T (2009) Effect of graft density on the nonionic bottle brush polymer/surfactant interaction. Langmuir 25:11383–11389

    Article  CAS  Google Scholar 

  19. Claesson PM, Makuska R, Varga I, Meszaros R, Titmuss S, Linse P, Pedrsen JS, Stubenrauch C (2010) Bottle-brush polymers: adsorption at surfaces and interaction with surfactants. Adv Colloid Interface 155:50–57

    Article  CAS  Google Scholar 

  20. Moglianetti M, Campbell RA, Nylander T, Varga I, Mohanty B, Claesson PM, Makuška R, Titmuss S (2009) Interaction of sodium dodecyl sulfate and high charge density comb polymers at the silica/water interface. Soft Matter 5:3646–3656

    Article  CAS  Google Scholar 

  21. Liu Q, Yuan S, Yan H, Zhao X (2012) Mechanism of oil detachment from a silica surface in aqueous surfactant solutions: molecular dynamics simulations. J Phys Chem B 116:2867–2875

    Article  CAS  Google Scholar 

  22. Yuan S, Ma L, Zhang X, Zheng L (2006) Molecular dynamics studies on monolayer of cetyltrimethylammonium bromide surfactant formed at the air/water interface. Colloids Surf A 289:1–9

    Article  CAS  Google Scholar 

  23. Benková Z, Szefczyk B, Cordeiro MNDS (2011) Molecular dynamics study of hydrated poly(ethylene oxide) chains grafted on siloxane surface. Macromolecules 44:3639–3648

    Article  Google Scholar 

  24. Rossi G, Elliott IG, Ala-Nissila T, Faller R (2011) Molecular dynamics study of a MARTINI coarse-grained polystyrene brush in good solvent: structure and dynamics. Macromolecules 44:563–571

    Article  Google Scholar 

  25. Shang BZ, Wang Z, Larson RG (2008) Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly(ethylene oxide) polymer. J Phys Chem B 112:2888–2900

    Article  CAS  Google Scholar 

  26. Darvas M, Gilányi T, Jedlovszky P (2011) Competitive adsorption of surfactants and polymers at the free water surface. a computer simulation study of the sodium dodecyl sulfate-poly(ethylene oxide) system. J Phys Chem B 115:933–944

    Article  CAS  Google Scholar 

  27. Wang H, Zhang H, Liu C, Yuan S (2012) Coarse-grained molecular dynamics simulation of self-assembly of polyacrylamide and sodium dodecylsulfate in aqueous solution. J Colloid Interface Sci 386:205–211

    Article  CAS  Google Scholar 

  28. Cao Q, Zuo C, Li L (2011) Electrostatic binding of oppositely charged surfactants to spherical polyelectrolyte brushes. Phys Chem Chem Phys 13:9706–9715

    Article  CAS  Google Scholar 

  29. Hantal G, Pártay LB, Varga I, Jedlovszky P, Gilányi T (2007) Counterion and surface density dependence of the adsorption layer of ionic surfactants at the vapor-aqueous solution interface: a Computer simulation study. J Phys Chem B 111:1769–1774

    Article  CAS  Google Scholar 

  30. Schuler LD, Daura X, van Gaunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218

    Article  CAS  Google Scholar 

  31. Bruce CD, Berkowitz ML, Perera L, Forbes MDE (2002) Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. J Phys Chem B 106:3788–3793

    Article  CAS  Google Scholar 

  32. Spoel DV, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers A, Feenstra K (2009) Gromacs User Manual, version 4.0; Gromacs: Groningen, The Netherlands, www.Gromacs.org

  33. Warne MR, Allan NL, Cosgrove T (2000) Computer simulation of water molecules at kaolinite and silica surfaces. Phys Chem Chem Phys 2:3663–3668

    Article  CAS  Google Scholar 

  34. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem B 91:6269–6271

    Article  CAS  Google Scholar 

  35. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  36. Essman U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald method. J Chem Phys 103:8577–8593

    Article  Google Scholar 

  37. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  38. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  39. Gao J, Ge W, Hu G, Li J (2005) From homogeneous dispersion to micelles a molecular dynamics simulation on the compromise of the hydrophilic and hydrophobic effects of sodium dodecyl sulfate in aqueous solution. Langmuir 21:5223–5229

    Article  CAS  Google Scholar 

  40. Gao Z, Wasylishen RE, Kwak JCI (1991) Distribution equilibrium of poly(ethylene oxide) in sodium dodecyl sulfate micellar solutions: an NMR paramagnetic relaxation study. J Phys Chem 95:462–467

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully appreciate the financial support from the National Science Foundation (21043008 and 21173128), and the Higher Educational Science and Technology Program of Shandong Province (HESTP) Project of Shandong Province (J13LD01). We are thankful for support by Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiling Yuan or Zhen Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2.74 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, H., Yuan, S. et al. Molecular dynamics study of the adsorption of anionic surfactant in a nonionic polymer brush. J Mol Model 20, 2267 (2014). https://doi.org/10.1007/s00894-014-2267-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2267-8

Keywords

Navigation