Skip to main content

Advertisement

Log in

Molecular structure and effects of intermolecular hydrogen bonding on the vibrational spectrum of trifluorothymine, an antitumor and antiviral agent

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present work, the experimental and the theoretical vibrational spectra of trifluorothymine were investigated. The FT-IR (400–4000 cm−1) and μ-Raman spectra (100–4000 cm−1) of trifluorothymine in the solid phase were recorded. The geometric parameters (bond lengths and bond angles) and vibrational frequencies of the title molecule in the ground state were calculated using ab initio Hartree–Fock (HF) method and density functional theory (B3LYP) method with the 6-31++G(d,p) and 6-311++G(d,p) basis sets for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with results found in the literature. Vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of trifluorothymine was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N–H⋯O hydrogen bonds.

The optimized molecular structure of dimeric trifluorothymine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amir M, Javed SA, Kumar H (2007) Pyrimidine as antiinflammatory agent: a review. Indian J Pharm Sci 69:337–343

    Article  CAS  Google Scholar 

  2. Rajeswaran M, Srikrishnan T (2008) Crystal and molecular structure of 5-trifluorothymine, a metabolite from human urine: role of fluorine in stacking and hydrogen bonded interactions. J Fluor Chem 129:493–497

    Article  CAS  Google Scholar 

  3. Çırak Ç, Sert Y, Ucun F (2012) Experimental and computational study on molecular structure and vibrational analysis of a modified biomolecule: 5-bromo-2′-deoxyuridine. Spectrochim Acta A 92:406–414

    Google Scholar 

  4. Aruna S, Shanmugam G (1985) Vibrational assignments of six-membered heterocyclic compounds: normal vibrations of 6-amino uracil and 6-amino 2-thiouracil. Spectrochim Acta A 41:531–536

    Google Scholar 

  5. Bandekar J, Zundel G (1983) Normal coordinate analysis treatment on uracil in solid state. Spectrochim Acta A 39:343–355

    Article  Google Scholar 

  6. Demirbaş N, Uğurluoğlu R, Demirbaş (2002) Synthesis of 3-alkyl(aryl)-4-alkylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-ones and 3-alkyl-4-alkylamino-4,5-dihydro-1H-1,2,4-triazol-5-ones as antitumor agents. Bioorg Med Chem 10:3717–3723

  7. Emilsson H, Selander H, Gaarder J (1985) Synthesis and antihypertensive activity of 3-amino-4-(arylideneamino)-4H-1,2,4-triazoles. Eur J Med Chem 20:333–337

    CAS  Google Scholar 

  8. Swarup S, Saxena VK (1991) Synthesis and pharmacological screening of some new 1-phenyl-3-(4-substituted-phenoxyphenyl)-5-substituted-benzylidino)thiobarbituric acids. J Indian Chem Soc 68:302–304

    Google Scholar 

  9. Rastogi VK, Mittal HP, Sharma YC, Sharma SN (1991) Spectroscopy of biological molecules. Royal Society of Chemistry, London, 403–404

  10. Qiu XL, Qing FL (2011) Recent advances in the synthesis of fluorinated amino acids. Eur J Org Chem 2011:3261–3278

    Article  CAS  Google Scholar 

  11. Oh CH, Hong JH (2007) Short synthesis and antiviral evaluation of C-fluoro-branched cyclopropyl nucleosides. Nucleosides Nucleotides Nucleic Acids 26:403–411

    Google Scholar 

  12. O’Hagan D, Harper DB (1999) Fluorine-containing natural products. J Fluor Chem 100:127–133

    Article  Google Scholar 

  13. Umeda M, Heidelberger C (1968) Comparative studies of fluorinated pyrimidines with various cell lines. Cancer Res 28:2529–2538

    CAS  Google Scholar 

  14. Yamashita J, Yasumoto M, Takeda S, Matsumoto H, Unemi NJ (1989) Studies on antitumor agents. 8. Antitumor activities of O-alkyl derivatives of 2′-deoxy-5-(trifluoromethyl)uridine and 2′-deoxy-5-fluorouridine. J Med Chem 32:136–139

    Google Scholar 

  15. Kaufman HE, Heidelberger C (1964) Therapeutic antiviral action of 5-trifluoromethyl-2-deoxyuridine in Herpes simplex keratitis. Science 145:585–586

    Google Scholar 

  16. Wingard JR, Stuart RK, Saral R, Burns WH (1981) Activity of trifluorothymidine against cytomegalovirus. Antimicrob Agents Chemother 20:286–290

    Article  CAS  Google Scholar 

  17. Carmine AA, Brogden RN, Heel RC, Speight TM, Avery GS (1982) Trifluridine: a review of its antiviral activity and therapeutic use in the topical treatment of viral eye infections. Drugs 23:329–353

    Google Scholar 

  18. Srivastav NC, Mak M, Agrawal B, Tyrrell DLJ, Kumar R (2010) Antiviral activity of 2,3-anhydro and related pyrimidine nucleosides against hepatitis B virus. Bioorg Med Chem Lett 20:6790–6793

    Article  CAS  Google Scholar 

  19. Srivastav NC, Shakya N, Mak M, Agrawal B, Tyrrell DL, Kumar R (2010) Antiviral activity of various 1-(2-deoxy-β-d-lyxofuranosyl), 1-(2-fluoro-β-d-xylofuranosyl), 1-(3-fluoro-β-d-arabinofuranosyl), and 2-fluoro-2,3-didehydro-2,3′-dideoxyribose pyrimidine nucleoside analogues against duck hepatitis B virus (DHBV) and human hepatitis B virus (HBV) replication. J Med Chem 53:7156–7166

    Google Scholar 

  20. Tandon M, Kumar P, Wiebe G, Wiebe LI (1992) Detection of new metabolites of trifluridine (F3TdR) using 19F NMR spectroscopy. Biochem Pharmacol 44:2223–2228

    Article  CAS  Google Scholar 

  21. Benci K, Wittine K, Radan M, Cetina M, Sedić M, Kraljević Pavelić S, Pavelić K, Clercq ED, Mintas M (2010) The unsaturated acyclic nucleoside analogues bearing a sterically constrained (Z)-4-benzamido-2-butenyl moiety: synthesis, X-ray crystal structure study, cytostatic and antiviral activity evaluations. Bioorg Med Chem 18:6249–6257

  22. Shanker R, Yadav RA, Singh IS (1994) Vibrational studies, barrier height and thermodynamic functions for biomolecules: 5-trifluoromethyl uracil. Spectrochim Acta A 50:1251–1258

    Google Scholar 

  23. Twamley B, Gupta OD, Shreeve JM (2002) 5-(Trifluoromethyl)uracil. Acta Crystallogr E 58:1040–1042

    Google Scholar 

  24. Ten GN, Nechaev VV, Pankratov AN, Berezin VI, Baranov VI (2010) Effect of hydrogen bonding on the structure and vibrational spectra of the complementary pairs of nucleic acid bases. J Struct Chem 51:854–861

    Google Scholar 

  25. Ten GN, Nechaev VV, Pankratov AN, Baranov VI (2010) Hydrogen bonding effect on the structure and vibrational spectra of complementary pairs of nucleic acid bases. I. Adenine–uracil. J Struct Chem 51:453–462

    Google Scholar 

  26. Zhao GJ, Han KL (2012) Hydrogen bonding in the electronic excited state. Acc Chem Res 45:404–413

    Article  CAS  Google Scholar 

  27. Zhao GJ, Han KL (2007) Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: theoretical study. J Phys Chem A 11:2469–2474

    Google Scholar 

  28. Zhao GJ, Han KL (2008) Effects of hydrogen bonding on tuning photochemistry: concerted hydrogen-bond strengthening and weakening. ChemPhysChem 9:1842–1846

    Article  CAS  Google Scholar 

  29. Zhao GJ, Han KL (2007) Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence quenching. J Phys Chem 111:9218–9223

    Article  CAS  Google Scholar 

  30. Zhao GJ, Han KL (2009) Role of intramolecular and intermolecular hydrogen bonding in both singlet and triplet excited states of aminofluorenones on internal conversion, intersystem crossing, and twisted intramolecular charge transfer. J Phys Chem A 113:14329–14335

    Google Scholar 

  31. Zhao GJ, Han KL (2008) Time-dependent density functional theory study on hydrogen-bonded intramolecular charge-transfer excited state of 4-dimethylamino-benzonitrile in methanol. J Comput Chem 29:2010–2017

    Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G,Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al- Laham MA, Peng CY,Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople J (2004) Gaussian 03, revision D.01. Wallingford, CT

  33. Pekparlak A, Avcı D, Cömert H, Atalay Y (2010) Theoretical studies of molecular structure and vibrational spectra of melaminium acetate acetic acid solvate monohydrate. Spectrochim Acta A 77:696–702

    Article  CAS  Google Scholar 

  34. Young DC (2001) Computational chemistry: a practical guide for applying techniques to real-world problems. Wiley, New York

  35. Jamróz MH (2004) Vibrational energy distribution analysis, VEDA 4. M.H. Jamróz, Warsaw

  36. Jamróz MH, Dobrowolski JC, Brzozowski R (2006) Vibrational modes of 2,6-, 2,7-, and 2,3-diisopropylnaphthalene. A DFT study. J Mol Struct 787:172–183

    Article  Google Scholar 

  37. Çırak Ç, Demir S, Ucun F, Çubuk O (2011) Experimental and theoretical study on the structure and vibrational spectra of β-2-aminopyridinium dihydrogenphosphate. Spectrochim Acta A 79:529–532

    Article  Google Scholar 

  38. Arslan H, Algül Ö, Dündar Y (2007) Structural and spectral studies on 3-(6-benzoyl-5-chloro-2-benzoxazolinon-3-yl) propanoic acid. Vib Spectrosc 44:248–255

    Article  CAS  Google Scholar 

  39. Ozeki K, Sakabe N, Tanaka J (1969) The crystal structure of thymine. Acta Crystallogr B 25:1038–1045

    Google Scholar 

  40. Portalone G, Bencivenni L, Colapietro M, Pieretti A, Ramondo F (1999) The effect of hydrogen bonding on the structures of uracil and some methyl derivatives studied by experiment and theory. Acta Chem Scand 53:57–68

    Article  CAS  Google Scholar 

  41. Sundaraganesan N, Kalaichelvan S, Meganathan C, Joshua BD, Cornard J (2008) FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 4-N,N-dimethylamino pyridine. Spectrochim Acta A 71:898–906

    Google Scholar 

  42. Balci K, Akkaya Y, Akyuz S (2010) An experimental and theoretical vibrational spectroscopic study on niflumic acid, a non-steroidal anti-inflammatory drug. Vib Spectrosc 53:239–247

    Article  CAS  Google Scholar 

  43. Álvarez RMS, Cutin EH, Romano RM, Della Védova CO (1999) Vibrational spectra and theoretical calculations of N-(trifluoromethyl)iminosulphur dichloride: CF3N=SCl2. Spectrochim Acta A 55:2615–2622

  44. Sert Y, Ucun F, Böyükata M (2008) Conformational and vibrational analysis of 2-, 3- and 4-trifluoromethylbenzaldehyde by ab initio Hartree–Fock, density functional theory and Moller–Plesset pertubation theory calculations. J Mol Struct (THEOCHEM) 861:122–130

    Google Scholar 

  45. Ramalingam S, Periandy S, Mohan S (2010) Vibrational spectroscopy (FTIR and FT-Raman) investigation using ab initio (HF) and DFT (B3LYP and B3PW91) analysis on the structure of 2-amino pyridine. Spectrochim Acta A 77:73–81

    Google Scholar 

  46. Nowak MJ, Lapinski L, Bienko DC, Michalska D (1997) Infrared matrix isolation spectra of 1-methyluracil—revised assignment based on the Hartree–Fock and post-Hartree–Fock studies. Spectrochim Acta A 53:855–865

    Google Scholar 

  47. Mohan S, Sundaraganesan N, Mink J (1991) FTIR and Raman studies on benzimidazole. Spectrochim Acta A 47:1111–1115

    Article  Google Scholar 

  48. Palafox MA, Tardajos G, Guerrero-Martínez A, Rastogi VK, Mishra D, Ojha SP, Kiefer W (2007) FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular geometry of biomolecule 5-aminouracil. Chem Phys 340:17–31

    Article  Google Scholar 

  49. Szczesniak M, Nowak MJ, Szczepaniak K, Person WB (1985) Effect of intermolecular interactions on the infrared spectrum of 1-methyluracil. Spectrochim Acta A 41:237–250

    Article  Google Scholar 

  50. Singh JS (2008) FTIR and Raman spectra and fundamental frequencies of biomolecule: 5-methyluracil (thymine). J Mol Struct 876:127–133

    Google Scholar 

  51. Rastogi VK, Palafox MA, Mittal L, Peica N, Kiefer W, Lang K, Ojha SP (2007) FTIR and FT-Raman spectra and density functional computations of the vibrational spectra, molecular geometry and atomic charges of the biomolecule: 5-bromouracil. J Raman Spectrosc 38:1227–1241

    Google Scholar 

Download references

Acknowledgements

This work was supported by the research fund of Erzincan University (project no: 2011BAP-10.01.15). The computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UYBHM) under grant number 10812009. We also thank Assist. Prof. Dr. Hamit Mermerkaya for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çağrı Çırak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çırak, Ç., Koç, N. Molecular structure and effects of intermolecular hydrogen bonding on the vibrational spectrum of trifluorothymine, an antitumor and antiviral agent. J Mol Model 18, 4453–4464 (2012). https://doi.org/10.1007/s00894-012-1449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1449-5

Keywords

Navigation