Skip to main content

Advertisement

Log in

Molecular motions of human HIV-1 gp120 envelope glycoproteins

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The HIV-1 gp120 exterior envelope glycoprotein undergoes a series of conformational rearrangements while sequentially interacting with the receptor CD4 and the coreceptor CCR5 or CXCR4 on the surface of host cells to initiate virus entry. Both the crystal structures of the HIV-1 gp120 core bound by CD4 and antigen 17b, and the SIV gp120 core pre-bound by CD4 are known. Despite the wealth of knowledge on these static snapshots of molecular conformations, the details of molecular motions crucial to intervention remain elusive. We presented a comprehensive comparative analysis of dynamic behavior of gp120 in its CD4-complexed, CD4-free and CD4-unliganded states based on the homology models with modeled V3 and V4 loops. CONCOORD computer simulation was utilized to generate ensembles of feasible protein structures, which were subsequently analyzed by essential dynamics technique to identify preferred concerted motions. The revealed collective fluctuations are dominated by complex motional modes such as rotation/twisting, flexing/closing, and shortness/elongation between or within the inner, outer, and bridging-sheet domains. An attempt has been made to relate these modes to receptor/coreceptor association and neutralization avoidance. Covariance web analysis revealed four subdomains that undergo concerted motion in gp120. The structural components in gp120 that move in concert with CD4 were also identified, which may be the suitable target for inhibitor design to interrupt CD4-gp120 interaction. The differences in B-factors between the three gp120 states revealed certain structural regions that could be related either to CD4 association or to subsequent dissociation of gp120 from gp41. These dynamics data provide new insights into the structure-function relationship of gp120 and may aid in structure-based anti-HIV vaccine design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HIV:

Human immunodeficiency virus

AIDS:

Acquired immunodeficiency syndrome

Fab:

Antigen binding fragment

SIV:

Simian immunodeficiency virus

V:

Variable loop

MD:

Molecular dynamics

ED:

Essential Dynamics

PANC:

Per-atom normalized covariance

MSF:

Mean square fluctuation

RMSD:

Root mean square deviation

CD4-BL:

CD4-binding-loop

References

  1. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Science 220:868–871

    Article  CAS  Google Scholar 

  2. Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, Palker TJ, Redfield R, Oleske J, Safai B (1984) Science 224:500–503

    Article  CAS  Google Scholar 

  3. Heeney JL, Hahn BH (2000) AIDS Suppl 14:125–127

    Google Scholar 

  4. Klein E, Ho R (2000) Clin Ther 22:295–314

    Article  CAS  Google Scholar 

  5. Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) Nature 312:763–767

    Article  CAS  Google Scholar 

  6. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) Science 272:872–877

    Article  CAS  Google Scholar 

  7. Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP, Cheng-Mayer C, Robinson J, Maddon PJ, Moore JP (1996) Nature 384:184–187

    Article  CAS  Google Scholar 

  8. Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing N, Borsetti A, Cardoso AA, Desjardin E, Newman W, Gerard C, Sodroski J (1996) Nature 384:179–183

    Article  CAS  Google Scholar 

  9. Veronese FD, DeVico AL, Copeland TD, Oroszlan S, Gallo RC, Sarngadharan MG (1985) Science 229:1402–1405

    Article  CAS  Google Scholar 

  10. Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, Srinivasan K, Sodroski J, Moore JP, Katinger H (1996) J Virol 70:1100–1108

    CAS  Google Scholar 

  11. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Nature 393:648–659

    Article  CAS  Google Scholar 

  12. Kwong PD, Wyatt R, Majeed S, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (2000) Structure Fold Des 8:1329–1339

    Article  CAS  Google Scholar 

  13. Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA (1998) Nature 393:705–711

    Article  CAS  Google Scholar 

  14. Chen B, Vogan EM, Gong H, Skehel JJ, Wiley DC, Harrison SC (2005) Nature 433:834–841

    Article  CAS  Google Scholar 

  15. Kwong PD, Doyle ML, Casper DJ, Cicala C, Leavitt SA, Majeed S, Steenbeke TD, Venturi M, Chaiken I, Fung M, Katinger H, Parren PW, Robinson J, Van Ryk D, Wang L, Burton DR, Freire E, Wyatt R, Sodroski J, Hendrickson WA, Arthos J (2002) Nature 420:678–682

    Article  CAS  Google Scholar 

  16. Myszka DG, Sweet RW, Hensley P, Brigham-Burke M, Kwong PD, Hendrickson WA, Wyatt R, Sodroski J, Doyle ML (2000) Proc Natl Acad Sci USA 97:9026–9031

    Article  CAS  Google Scholar 

  17. Berendsen HJ, Hayward S (2000) Curr Opin Struct Biol 10:165–169

    Article  CAS  Google Scholar 

  18. Hsu ST, Bonvin AM (2004) Proteins 55:582–593

    Article  CAS  Google Scholar 

  19. Pan Y, Ma B, Nussinov R (2005) J Mol Biol 350:514–527

    Article  CAS  Google Scholar 

  20. Pan Y, Ma B, Keskin O, Nussinov R (2004) J Biol Chem 279:30523–30530

    Article  CAS  Google Scholar 

  21. de Groot BL, van Aalten DMF, Scheek RM, Amadei A, Vriend G, Berendsen HJ (1997) Proteins 29:240–251

    Article  Google Scholar 

  22. Barrett CP, Noble ME (2005) J Biol Chem 280:13993–14005

    Article  CAS  Google Scholar 

  23. Barrett CP, Hall BA, Noble ME (2004) Acta Crystallogr D Biol Crystallogr 60:2280–2287

    Article  Google Scholar 

  24. Mello LV, De Groot BL, Li S (2002) J Biol Chem 277:36678–36688

    Article  CAS  Google Scholar 

  25. Vreede J, van der Horst MA, Hellingwerf KJ, Crielaard W, van Aalten DM (2003) J Biol Chem 278:18434–18439

    Article  CAS  Google Scholar 

  26. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2005) Nucl Acids Res 33:D154–D159 (Database issue)

    Article  CAS  Google Scholar 

  27. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acids Res 28:235–242

    Article  CAS  Google Scholar 

  28. Vranken WF, Budesinsky M, Fant F, Boulez K, Borremans FA (1995) FEBS Lett 374:117–121

    Article  CAS  Google Scholar 

  29. Baker D, Sali A (2001) Science 294:93–96

    Article  CAS  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38, 27–28

    Article  CAS  Google Scholar 

  31. Sali A, Blundell TL (1993) J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  32. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  33. Amadei A, Linssen ABM, Berendsen HJC (1993) Proteins 17:412–425

    Article  CAS  Google Scholar 

  34. Levy R, Srinivasan A, Olson W, MsCammon J (1984) Biopolymers 23:1099–1112

    Article  CAS  Google Scholar 

  35. Garcia AE (1992) Phys Rev Lett 68:2696–2699

    Article  CAS  Google Scholar 

  36. Hayward S, Go N (1995) Annu Rev Phys Chem 46:223–250

    Article  CAS  Google Scholar 

  37. Berendsen HJC, Van Der Spoel D, Van Drunen R (1995) Comp Phys Comm 91:43–56

    Article  CAS  Google Scholar 

  38. Lindahl E, Hess B, Van Der Spoel D (2001) J Mol Mod 7:306–317

    CAS  Google Scholar 

  39. Van Aalten DMF, Findlay JBC, Amadei A, Berendsen HJC (1995) Prot Eng 8:1129–1136

    Article  Google Scholar 

  40. Van Aalten DMF, de Groot BL, Berendsen HJC, Findlay JBC, Amadei A (1997) J Comp Chem 18:169–181

    Article  Google Scholar 

  41. Faraldo-Gómez JD, Forrest LR, Baaden M, Bond PJ, Domene C, Patargias G, Cuthbertson J, Sansom MSP (2004) Proteins 57:783–791

    Article  Google Scholar 

  42. McCammon JA, Harvey S (1987) Dynamics of proteins and nucleic acids. Cambridge University Press, Cambridge

    Google Scholar 

  43. Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, Stanfield RL, Dimitrov DS, Korber B, Sodroski J, Wilson IA, Wyatt R, Kwong PD (2005) Science 310:1025–1028

    Article  CAS  Google Scholar 

  44. Hunenberger PH, Mark AE, van Gunsteren WF (1995) J Mol Biol 252:492–503

    Article  CAS  Google Scholar 

  45. Laskowski RA, MacArthur M, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  46. de Groot BL, Hayward S, van Aalten DMF, Amadei A, Berendsen HJC (1998) Proteins 31:116–127

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank High Performance Computer Center of Yunnan University for computational support. This work was supported by funds from a 973 project (2003CB415102) and partially supported by grants from Yunnan Province (2006C0008M, 07Z10756, 2007C163M) and Innovation Group Project from Yunnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Xin Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SQ., Liu, SX. & Fu, YX. Molecular motions of human HIV-1 gp120 envelope glycoproteins. J Mol Model 14, 857–870 (2008). https://doi.org/10.1007/s00894-008-0327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0327-7

Keywords

Navigation