Skip to main content

Advertisement

Log in

ATF-2 immunoreactivity in post-mitotic and terminally differentiated human odontoblasts

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Activating transcription factor 2 (ATF-2/CRE-BP1; cAMP-responsive element binding protein 1) is a member of nuclear transcription factor activator protein-1 (AP-1) family. AP-1 regulates cellular processes including growth, proliferation, differentiation and apoptosis. However, biological relationship of cellular process to each member of the AP-1 family is not clear yet. The objective of the present study was to compare the ATF-2 immunoreactivity in the post-mitotic and terminally differentiated odontoblasts and in the pulpal fibroblasts which can be divided by mitosis when required. Fibroblasts at various stages of differentiation co-exist in the human dental pulp. ATF-2 was investigated immunohistochemically in 20 permanent human teeth. According to the findings obtained, the mean percentage of ATF-2 positive cells was 68.5 ± 19.2 % in the odontoblasts and 22.8 ± 13.7 % in the pulpal fibroblasts. The comparison of ATF-2 positivity revealed a statistically significant difference between odontoblasts and pulpal fibroblasts. These findings have suggested that ATF-2 is more associated with cell survival rather than cell proliferation, and revealed much of effectiveness in maintaining terminal differentiation than the various differentiation stages of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Foletta VC (1996) Transcription factor AP-1, and the role of Fra-2. Immunol Cell Biol 74:121–133

    Article  CAS  PubMed  Google Scholar 

  2. Wang L, Payton R, Dai W, Lu L (2011) Hyperosmotic stress-induced ATF-2 activation through Polo-like kinase 3 in human corneal epithelial cells. J Biol Chem 286:1951–1958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie 85:747–752

    Article  CAS  PubMed  Google Scholar 

  4. Fleischmann A, Hafezi F, Elliott C, Reme EC, Rüther U, Wagner FE (2000) Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev 14:2695–2700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    Article  CAS  PubMed  Google Scholar 

  6. Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973

    Article  CAS  PubMed  Google Scholar 

  7. Milde-Langosch K, Röder H, Andritzky B, Aslan B, Hemminger G, Brinkmann A, Bamberger CM, Löning T, Bamberger AM (2004) The role of the AP-1 transcription factors c-Fos, FosB, Fra-1 and Fra-2 in the invasion process of mammary carcinomas. Breast Cancer Res Treat 86:139–152

    Article  CAS  PubMed  Google Scholar 

  8. Yi JH, Park SW, Kapadia R, Vemuganti R (2007) Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochem Int 50:1014–1027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Angel P, Szabowski A (2002) Function of AP-1 target genes in mesenchymal-epithelial cross-talk in skin. Biochem Pharmacol 64:949–956

    Article  CAS  PubMed  Google Scholar 

  10. Kundu JK, Surh YJ (2004) Molecular basis of chemoprevention by resveratrol: NF-kappaB and AP-1 as potential targets. Mutat Res 555:65–80

    Article  CAS  PubMed  Google Scholar 

  11. Bolat I, Keklikoglu N (2010) Immunoreactivity of ATF-2 and Fra-2 in human dental follicle. Folia Histochem Cytobiol 48:197–201

    Article  PubMed  Google Scholar 

  12. Jochum W, Passegue E, Wagner EF (2001) AP-1 in mouse development and tumorigenesis. Oncogene 20:2401–2412

    Article  CAS  PubMed  Google Scholar 

  13. Keklikoglu N (2004) The localization of Fos B, a member of transcription factor AP-1 family, in rat odontoblasts and pulpal undifferentiated ectomesenchymal cells. Folia Histochem Cytobiol 42:191–193

    CAS  PubMed  Google Scholar 

  14. Shirsat NV, Shaikh SA (2003) Overexpression of the immediate early gene fra-1 inhibits proliferation, induces apoptosis, and reduces tumourigenicity of c6 glioma cells. Exp Cell Res 291:91–100

    Article  CAS  PubMed  Google Scholar 

  15. Seong KH, Maekawa T, Ishii S (2012) Inheritance and memory of stress-induced epigenome change: roles played by the ATF-2 family of transcription factors. Genes Cells 17:249–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Vlahopoulos SA, Logotheti S, Mikas D, Giarika A, Gorgoulis V, Zoumpourlis V (2008) The role of ATF-2 in oncogenesis. Bioessays 30:314–327

    Article  CAS  PubMed  Google Scholar 

  17. Maekawa T, Jin W, Ishii S (2010) The role of ATF-2 family transcription factors in adipocyte differentiation: antiobesity effects of p38 inhibitors. Mol Cell Biol 30:613–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bhoumik A, Lopez-Bergami P, Ronai Z (2007) ATF2 on the double—activating transcription factor and DNA damage response protein. Pigment Cell Res 20:498–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ouwens DM, de Ruiter ND, van der Zon GC, Carter AP, Schouten J, van der Burgt C, Kooistra K, Bos JL, Maassen JA, van Dam H (2002) Growth factors can activate ATF2 via a two step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. EMBO J 21:3782–3793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Persengiev SP, Green MR (2003) The role of ATF/CREB family members in cell growth, survival and apoptosis. Apoptosis 8:225–228

    Article  CAS  PubMed  Google Scholar 

  21. Bhoumik A, Ronai Z (2008) ATF2: a transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle 7:2341–2345

    Article  CAS  PubMed  Google Scholar 

  22. Torneck CD (1994) Dentin Pulp Complex. In: Ten Cate AR (ed) Oral histology development, structure and function, 4th edn. Mosby, St. Louis, pp 169–217

    Google Scholar 

  23. Chiego DJ Jr (2002) Histology of the Pulp. In: Avery JK (ed) Oral development and Histology, 3rd edn. Thieme, New York, pp 190–212

    Google Scholar 

  24. Ruch JV, Lesot H, Bègue-Kirn C (1995) Odontoblast differentiation. Int J Dev Biol 39:51–68

    CAS  PubMed  Google Scholar 

  25. Pashley DH, Walton RE, Slavkin HC (2002) Histology and physiology of the dental pulp. In: Ingle JI, Bakland LK (eds) Endodontics, 5th edn. BC Decker Inc, Hamilton, pp 25–61

    Google Scholar 

  26. Lin LM, Rosenberg PA (2011) Repair and regeneration in endodontics. Int Endod J 44:889–906

    Article  CAS  PubMed  Google Scholar 

  27. Matsushita K, Motani R, Sakuta T, Yamaguchi N, Koga T, Matsuo K, Nagaoka S, Abeyama K, Maruyama I, Torii M (2000) The role of vascular endothelial growth factor in human dental pulp cells: induction of chemotaxis, proliferation, and differentiation and activation of the AP-1-dependent signaling pathway. J Dent Res 79:1596–1603

    Article  CAS  PubMed  Google Scholar 

  28. Nishikawa S (2004) Transient increase in anti-p-ATF2 immunoreactivity in the late secretion ameloblasts apical to the transition zone of rat incisors. Anat Sci Int 79:87–94

    Article  PubMed  Google Scholar 

  29. Lau E, Kluger H, Varsano T, Lee K, Scheffler I, Rimm DL, Ideker T, Ronai ZA (2012) PKCε promotes oncogenic functions of ATF2 in the nucleus while blocking its apoptotic function at mitochondria. Cell 148:543–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lau E, Ronai ZA (2012) ATF2—at the crossroad of nuclear and cytosolic functions. J Cell Sci 125:2815–2824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Liu H, Deng X, Shyu YJ, Li JJ, Taparowsky EJ, Hu CD (2006) Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization. EMBO J 25:1058–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Roivainen A, Söderström KO, Pirilä L, Aro H, Kortekangas P, Merilahti-Palo R, Yli-Jama T, Toivanen A, Toivanen P (1996) Oncoprotein expression in human synovial tissue: an immunohistochemical study of different types of arthritis. Br J Rheumatol 35:933–942

    Article  CAS  PubMed  Google Scholar 

  33. Keklikoglu N, Akinci S (2013) Comparison of three different techniques for histological tooth preparation. Folia Histochem Cytobiol 51:286–291

    Article  PubMed  Google Scholar 

  34. Keklikoglu N (2008) c-Jun, Fra-2, and ATF-2 immunoreactivity in the jejunal tissues of the healthy rat. Dig Dis Sci 53:2680–2686

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Humeyra Kocaelli (Istanbul University Faculty of Dentistry Department of Oral Surgery and Medicine, Istanbul, Turkey) for her valuable contribution in providing the necessary materials for this research, and Biologist Ilker Bolat (Istanbul University Faculty of Dentistry Department of Histology and Embryology, Istanbul, Turkey) for his assistance during the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurullah Keklikoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keklikoglu, N., Akinci, S. ATF-2 immunoreactivity in post-mitotic and terminally differentiated human odontoblasts. Med Mol Morphol 48, 164–168 (2015). https://doi.org/10.1007/s00795-014-0092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-014-0092-x

Keywords

Navigation