Skip to main content
Log in

Distribution and role of tenascin-C in human osteoarthritic cartilage

  • Original Article
  • Published:
Journal of Orthopaedic Science

Abstract

Background

Tenascin-C (TN-C) is expressed in the cartilage of osteoarthritis (OA). We examined whether TN-C was involved in cartilage repair of the diseased joints. Human articular cartilage samples were obtained from patients with OA and those with normal joints.

Methods

Immunohistochemistry testing of TN-C, chondroitin sulfate (CS), and proliferating cell nuclear antigen (PCNA) was performed. Chondrocytes were isolated from human cartilage and cultured. After treatment with TN-C, chondrocyte proliferation s was analyzed by bromodeoxyuridine (BrdU) incorporation assay using an enzyme-linked immunosorbent assay kit. Glycosaminoglycan content was determined by dimethylmethylene blue (DMMB) assay. The mRNA expression of aggrecan was also analyzed, by quantitative real-time polymerase chain reaction (PCR).

Results

In osteoarthritic cartilage, increased TN-C staining was observed with the degeneration of articular cartilage in comparison with normal cartilage. TN-C staining was shown in the cartilage surface overlying CS-positive areas. In addition, the expression of PCNA in the positive areas for TN-C was significantly higher than that in the negative areas. Treatment of human articular chondrocytes with 10 μg/ml TN-C accelerated chondrocyte proliferation, increased the proteoglycan amount in culture, and increased the expression of aggrecan mRNA.

Conclusions

Our findings indicate that the distribution of TN-C is related to CS production and chondrocyte proliferation in osteoarthritic cartilage and that TN-C has effects on DNA synthesis, proteoglycan content, and aggrecan mRNA expression in vitro. TN-C may be responsible for repair in human osteoarthritic cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckwalter JA, Martin JA. Osteoarthritis. Adv Drug Deliv Rev 2006;58:150–167.

    Article  CAS  PubMed  Google Scholar 

  2. Jenniskens YM, Koevoet W, de Bart AC, Weinans H, Verhaar JA, Jahr H, et al. Biochemical and functional modulation of the cartilage collagen network by IGF1, TGFbeta2 and FGF2. Osteoarthritis Cartilage 2006;14:1136–1146.

    Article  CAS  PubMed  Google Scholar 

  3. Chiquet-Ehrismann R. Tenascins, a growing family of extracellular matrix proteins. Experientia 1995;51:853–862.

    Article  CAS  PubMed  Google Scholar 

  4. Chiquet-Ehrismann R, Mackie EJ, Pearson CA, Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 1986;47:131–139.

    Article  CAS  PubMed  Google Scholar 

  5. Yoshida T, Matsumoto E, Hanamura N, Kalembeyi I, Katsuta K, Ishihara A, et al. Co-expression of tenascin and fibronectin in epithelial and stromal cells of benign lesions and ductal carcinomas in the human breast. J Pathol 1997;182:421–428.

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida T, Yoshimura E, Numata H, Sakakura Y, Sakakura T. Involvement of tenascin-C in proliferation and migration of laryngeal carcinoma cells. Virchows Arch 1999;435:496–500.

    Article  CAS  PubMed  Google Scholar 

  7. Tamaoki M, Imanaka-Yoshida K, Yokoyama K, Nishioka T, Inada H, Hiroe M, et al. Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol 2005;167:71–80.

    CAS  PubMed  Google Scholar 

  8. Mackie EJ, Murphy LI. The role of Tenascin-C and related glycoproteins in early chondrogenesis. Microsc Res Tech 1998;43:102–110.

    Article  CAS  PubMed  Google Scholar 

  9. Pfander D, Heinz N, Rothe P, Carl HD, Swoboda B. Tenascin and aggrecan expression by articular chondrocytes is influenced by interleukin 1β: a possible explanation for the changes in matrix synthesis during osteoarthritis. Ann Rheum Dis 2004;63:240–244.

    Article  CAS  PubMed  Google Scholar 

  10. Chevalier X, Groult N, Larget-Piet B, Zardi L, Hornebeck W. Tenascin distribution in articular cartilage from normal subjects and from patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 1994;37:1013–1022.

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt-Rohlfing B, Gavenis K, Kippels M, Schneider U. New potential markers for cartilage degradation of the knee joint. Scand J Rheumatol 2002;31:151–157.

    PubMed  Google Scholar 

  12. Hasegawa M, Hirata H, Sudo A, Kato K, Kawase D, Kinoshita N, et al. Tenascin-C concentration in synovial fluid correlates with radiographic progression of knee osteoarthritis. J Rheumatol 2004;31:2021–2026.

    CAS  PubMed  Google Scholar 

  13. Mankin HJ, Dorfman H, Lippiello L, Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 1971;53:523–537.

    CAS  PubMed  Google Scholar 

  14. Pfander D, Swoboda B, Kirsch T. Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am J Pathol 2001;159:1777–1783.

    CAS  PubMed  Google Scholar 

  15. Masuda K, Takegmi K, An H, Kumano F, Chiba K, Andersson GB, et al. Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res 2003;21:922–930.

    Article  CAS  PubMed  Google Scholar 

  16. Jarvinen TA, Jozsa L, Kannus P, Jarvinen TL, Kvist M, Hurme T, et al. Mechanical loading regulates tenascin-C expression in the osteotendinous junction. J Cell Sci 1999;112:3157–3166.

    CAS  PubMed  Google Scholar 

  17. Chiquet-Ehrismann R, Tannheimer M, Koch M, Brunner A, Spring J, Martin D, et al. Tenascin-C expression by fibroblasts is elevated in stressed collagen gels. J Cell Biol 1994;127:2093–2101.

    Article  CAS  PubMed  Google Scholar 

  18. Cowan KN, Jones PL, Rabinovitch M. Regression of hypertrophied rat pulmonary arteries in organ culture is associated with suppression of proteolytic activity, inhibition of tenascin-C, and smooth muscle apoptosis. Circ Res 1999;84:1223–1233.

    CAS  PubMed  Google Scholar 

  19. Savarese JJ, Erickson H, Scully SP. Articular chondrocyte tenascin-C production and assembly into de novo extracellular matrix. J Orthop Res 1996;14:273–281.

    Article  CAS  PubMed  Google Scholar 

  20. Pottenger LA, Lyon NB, Hecht JD, Neustadt PM, Robinson RA. Influence of cartilage particle size and proteoglycan aggregation on immobilization of proteoglycans. J Biol Chem 1982;257:11479–11485.

    CAS  PubMed  Google Scholar 

  21. Day JM, Olin AI, Murdoch AD, Canfield A, Sasaki T, Timpl R, et al. Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins. J Biol Chem 2004;279:12 511–12 518.

    CAS  Google Scholar 

  22. Lee DA, Noguchi T, Knight MM, O’Donnell L, Bentley G, Bader DL. Response of chondrocyte subpopulations cultured within unloaded and loaded agarose. J Orthop Res 1998;16:726–733.

    Article  CAS  PubMed  Google Scholar 

  23. Wong M, Wuethrich P, Eggli P, Hunziker E. Zone-specific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography. J Orthop Res 1996;14:424–432.

    Article  CAS  PubMed  Google Scholar 

  24. Murphy LI, Fischer D, Chiquet-Ehrismann R, Mackie EJ. Tenascin-C induced stimulation of chondrogenesis is dependent on the presence of the C-terminal fibrinogen-like globular domain. FEBS Lett 2000;480:189–192.

    Article  CAS  PubMed  Google Scholar 

  25. Saga Y, Yagi T, Ikawa Y, Sakakura T, Aizawa S. Mice develop normally without tenascin. Genes Dev 1992;6:1821–1831.

    Article  CAS  PubMed  Google Scholar 

  26. Forsberg E, Hirsch E, Frohlich L, Meyer M, Ekblom P, Aszodi A, et al. Skin wounds and severed nerves heal normally in mice lacking tenascin-C. Proc Natl Acad Sci USA 1996;93:6594–6599.

    Article  CAS  PubMed  Google Scholar 

  27. Hunziker EB, Driesang IM, Morris EA. Chondrogenesis in cartilage repair is induced by members of the transforming growth factor-beta superfamily. Clin Orthop Relat Res 2001;391:171–181.

    Article  Google Scholar 

  28. Tucker RP, Hammarback JA, Jenrath DA, Mackie EJ, Xu Y. Tenascin expression in the mouse: in situ localization and induction in vitro by bFGF. J Cell Sci 1993;104:69–76.

    CAS  PubMed  Google Scholar 

  29. Pearson CA, Pearson D, Shibahara S, Hofsteenge J, Chiquet-Ehrismann R. Tenascin: cDNA cloning and induction by TGFbeta. EMBO J 1988;7:2977–2982.

    CAS  PubMed  Google Scholar 

  30. Sakai T, Kawakatsu H, Ohta J, Saito M. Tenascin induction in tenascin nonproducing carcinoma cell lines in vivo and by TGFbeta 1 in vitro. J Cell Physiol 1994;159:561–572.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Nakoshi, Y., Hasegawa, M., Akeda, K. et al. Distribution and role of tenascin-C in human osteoarthritic cartilage. J Orthop Sci 15, 666–673 (2010). https://doi.org/10.1007/s00776-010-1513-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00776-010-1513-x

Keywords

Navigation