Skip to main content
Log in

A sensitive and stable amperometric nitrate biosensor employing Arabidopsis thaliana nitrate reductase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nitrate reductase (NR) from the plant Arabidopsis thaliana has been employed in the development of an amperometric nitrate biosensor that functions at physiological pH. The anion anthraquinone-2-sulfonate (AQ) is used as an effective artificial electron transfer partner for NR at a glassy carbon (GC) electrode. Nitrate is enzymatically reduced to nitrite and the oxidized form of NR is electrochemically reduced by the hydroquinone form of the mediator (AQH2). The GC/NR electrode shows a pronounced cathodic wave for nitrate reduction and the catalytic current increases linearly in the nitrate concentration range of 10–400 µM with a correlation coefficient of 0.989. Using an amperometric method, a low detection limit of 0.76 nM (S/N = 3) was achieved. The practical application of the present electrochemical biosensor was demonstrated by the determination of nitrate concentration in natural water samples and the results agreed well with a standard spectroscopic method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In all cases we assume that the heme cofactor of NR relays electrons rapidly from AQH2 to the Mo active site.

Abbreviations

AQ:

Anthraquinone-2-sulfonate

CV:

Cyclic voltammetry

FAD:

Flavin adenine dinucleotide

GC:

Glassy carbon

MV:

Methyl viologen

NADH:

Nicotinamide adenine dinucleotide

NHE:

Normal hydrogen electrode

NR:

Nitrate reductase

References

  1. Rajeshwar K, Jorge IG (1997) Environmental electrochemistry. Academic Press, San Diego

    Google Scholar 

  2. Moorcroft MJ, Davis J, Compton RG (2001) Talanta 54:785–803

    Article  CAS  PubMed  Google Scholar 

  3. Yu WT, Jiang CM, Ma Q, Xu YG, Zou H, Zhang SC (2011) Atmosph Res 101:460–468

    Article  CAS  Google Scholar 

  4. Cameron KC, Di HJ, Moir JL (2013) Ann Appl Biol 162:145–173

    Article  CAS  Google Scholar 

  5. Lunau M, Voss M, Erickson M, Dziallas C, Casciotti K, Ducklow H (2013) Environ Microbiol 15:1492–1504

    Article  CAS  PubMed  Google Scholar 

  6. Kempster PL (1981) Water SA 7:61

    CAS  Google Scholar 

  7. Phillips WEJ (1971) Food Cosmet Toxicol 9:219–228

    Article  CAS  PubMed  Google Scholar 

  8. Fewtrell L (2004) Environ Health Perspect 112:1371–1374

    Article  PubMed Central  PubMed  Google Scholar 

  9. Hafezi B, Majidi MR (2013) Anal Meth 5:3552–3556

    Article  CAS  Google Scholar 

  10. Gamboa JCM, Pena RC, Paixao TRLC, Bertotti M (2009) Talanta 80:581–585

    Article  CAS  PubMed  Google Scholar 

  11. Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  12. Tsai M-C, Zhuang D-X, Chen P-Y (2010) Electrochim Acta 55:1019–1027

    Article  CAS  Google Scholar 

  13. Badea GE (2009) Electrochim Acta 54:996–1001

    Article  CAS  Google Scholar 

  14. Reyter D, Chamoulaud G, Bélanger D, Roué L (2006) J Electroanal Chem 596:13–24

    Article  CAS  Google Scholar 

  15. Zhang X, Wang J, Wang Z, Wang S (2005) Synth Met 155:95–99

    Article  CAS  Google Scholar 

  16. Hille R (1996) Chem Rev 96:2757–2816

    Article  CAS  PubMed  Google Scholar 

  17. Hille R, Hall J, Basu P (2014) Chem Rev 114:3963–4038

    Article  CAS  PubMed  Google Scholar 

  18. Redinbaugh MG, Campbell WH (1985) J Biol Chem 260:3380–3385

    CAS  PubMed  Google Scholar 

  19. Crawford NM, Smith M, Bellissimo D, Davis RW (1988) Proc Natl Acad Sci USA 85:5006–5010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Vaucheret H, Kronenberger J, Rouzé P, Caboche M (1989) Plant Mol Biol 12:597–600

    Article  CAS  PubMed  Google Scholar 

  21. Cosnier S, Da SS, Shan D, Gorgy K (2008) Bioelectrochemistry 74:47–51

    Article  CAS  PubMed  Google Scholar 

  22. Quan D, Shim JH, Kim JD, Park HS, Cha GS, Nam H (2005) Anal Chem 77:4467–4473

    Article  CAS  PubMed  Google Scholar 

  23. Adeloju SB, Sohail M (2011) Electroanalysis 23:987–996

    Article  CAS  Google Scholar 

  24. Cosnier S, Galland B, Innocent C (1997) J Electroanal Chem 433:113–119

    Article  CAS  Google Scholar 

  25. Cosnier S, Innocent C, Jouanneau Y (1994) Anal Chem 66:3198–3201

    Article  CAS  Google Scholar 

  26. Ferreyra NF, Solis VM (2004) Bioelectrochemistry 64:61–70

    Article  CAS  PubMed  Google Scholar 

  27. Fischer K, Barbier GG, Hecht H-J, Mendel RR, Campbell WH, Schwarz G (2005) Plant Cell 17:1167–1179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bernhardt PV (2006) Aust J Chem 59:233–256

    Article  CAS  Google Scholar 

  29. Da SS, Shan D, Cosnier S (2004) Sens Actuators. B B103:397–402

    Google Scholar 

  30. Patolsky F, Katz E, Heleg-Shabtai V, Willner I (1998) Chem Eur J 4:1068–1073

    Article  CAS  Google Scholar 

  31. Glazier SA, Campbell ER, Campbell WH (1998) Anal Chem 70:1511–1515

    Article  CAS  PubMed  Google Scholar 

  32. Kirstein D, Kirstein L, Scheller F, Borcherding H, Ronnenberg J, Diekmann S, Steinrucke P (1999) J Electroanal Chem 474:43–51

    Article  CAS  Google Scholar 

  33. Moretto LM, Ugo P, Zanata M, Guerriero P, Martin CR (1998) Anal Chem 70:2163–2166

    Article  CAS  Google Scholar 

  34. Willner I, Katz E, Lapidot N, Bauerle P (1992) Bioelectrochem Bioenerg 29:29–45

    Article  CAS  Google Scholar 

  35. Lambeck I, Chi J-C, Krizowski S, Mueller S, Mehlmer N, Teige M, Fischer K, Schwarz G (2010) Biochemistry 49:8177–8186

    Article  CAS  PubMed  Google Scholar 

  36. Kalimuthu P, Fischer-Schrader K, Schwarz G, Bernhardt PV (2013) J Phys Chem B 117:7569–7577

    Article  CAS  PubMed  Google Scholar 

  37. Wipf DO, Wehmeyer KR, Wightman RM (1986) J Org Chem 51:4760–4764

    Article  CAS  Google Scholar 

  38. Meckstroth ML, Norris BJ, Heineman WR (1981) Bioelectrochem Bioenerg 8:63–70

    Article  CAS  Google Scholar 

  39. Ferreyra NF, Dassie SA, Solis VM (2000) J Electroanal Chem 486:126–132

    Article  CAS  Google Scholar 

  40. Brody MS, Hille R (1999) Biochemistry 38:6668–6677

    Article  CAS  PubMed  Google Scholar 

  41. Zare HR, Memarzadeh F, Ardakani MM, Namazian M, Golabi SM (2005) Electrochim Acta 50:3495–3502

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the Australian Research Council (DP120101465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul V. Bernhardt.

Additional information

Responsible Editors: José Moura and Paul Bernhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalimuthu, P., Fischer-Schrader, K., Schwarz, G. et al. A sensitive and stable amperometric nitrate biosensor employing Arabidopsis thaliana nitrate reductase. J Biol Inorg Chem 20, 385–393 (2015). https://doi.org/10.1007/s00775-014-1171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1171-0

Keywords

Navigation