Skip to main content

Advertisement

Log in

The BMP-2 mutant L51P: a BMP receptor IA binding-deficient inhibitor of noggin

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The antagonist-specific regulation in tissue engineering constitutes important attempts to achieve an improved and rapid bone regeneration by controlling the natural biological response of the natural body growth factors. L51P is molecularly engineered bone morphogentic protein-2 (BMP-2) variant with a substitution of the 51st leucine with a proline residue. L51P is deficient in BMP receptor binding, but maintains its structure and affinity for inhibitory proteins such as noggin, chordin, and gremlin. These modifications convert the BMP-2 variant L51P into a receptor-inactive inhibitor of BMP antagonists. This current approach may prevent the uncontrolled bone overgrowth using high concentration of BMPs and thus regulates the possible growth factor’s high-dose side effects. Exploring of L51P biological functions is required to broad our understanding of BMP mutant biological functions and their potential clinical applications. The progress of L51P researches would hopefully lead to the development of multiple applications for using the L51P in bone and fracture healing disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BMP:

Bone morphogenetic protein

BRI:

BMP receptor type I

BRII:

BMP receptor type II

CCN:

Cysteine-rich 61, connective tissue growth factor, nephroblastoma-overexpressed

References

  1. Sieber C, Kopf J, Hiepen C, Knaus P (2009) Recent advances in BMP receptor signaling (in eng). Cytokine Growth Factor Rev 20:343–355. https://doi.org/10.1016/j.cytogfr.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  2. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments (in eng). Nat Med 19:179–192. https://doi.org/10.1038/nm.3074

    Article  CAS  PubMed  Google Scholar 

  3. Lorda-Diez CI, Montero JA, Rodriguez-Leon J, Garcia-Porrero JA, Hurle JM (2013) Expression and functional study of extracellular BMP antagonists during the morphogenesis of the digits and their associated connective tissues (in eng). PLoS One 8:e60423. https://doi.org/10.1371/journal.pone.0060423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yanagita M (2005) BMP antagonists: their roles in development and involvement in pathophysiology (in eng). Cytokine Growth Factor Rev 16:309–317. https://doi.org/10.1016/j.cytogfr.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  5. Fajardo M, Liu CJ, Egol K (2009) Levels of expression for BMP-7 and several BMP antagonists may play an integral role in a fracture nonunion: a pilot study (in eng). Clin Orthop Relat Res 467:3071–3078. https://doi.org/10.1007/s11999-009-0981-9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zara JN, Siu RK, Zhang X, Shen J, Ngo R, Lee M, Li W, Chiang M, Chung J, Kwak J, Wu BM, Ting K, Soo C (2011) High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo (in eng). Tissue Eng Part A 17:1389–1399. https://doi.org/10.1089/ten.TEA.2010.0555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garrison KR, Donell S, Ryder J, Shemilt I, Mugford M, Harvey I, Song F (2007) Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review (in eng). Health Technol Assess (Winchester, England) 11:1–150, iii-iv

  8. Tsialogiannis E, Polyzois I, Oak Tang Q, Pavlou G, Tsiridis E, Heliotis M, Tsiridis E (2009) Targeting bone morphogenetic protein antagonists: in vitro and in vivo evidence of their role in bone metabolism (in eng). Expert Opin Ther Targets 13:123–137. https://doi.org/10.1517/14728220802637725

    Article  CAS  PubMed  Google Scholar 

  9. Keller S, Nickel J, Zhang JL, Sebald W, Mueller TD (2004) Molecular recognition of BMP-2 and BMP receptor IA (in eng). Nat Struct Mol Biol 11:481–488. https://doi.org/10.1038/nsmb756

    Article  CAS  PubMed  Google Scholar 

  10. Sebald W, Nickel J, Zhang JL, Mueller TD (2004) Molecular recognition in bone morphogenetic protein (BMP)/receptor interaction (in eng). Biol Chem 385:697–710. https://doi.org/10.1515/bc.2004.086

    Article  CAS  PubMed  Google Scholar 

  11. Liu A, Niswander LA (2005) Bone morphogenetic protein signalling and vertebrate nervous system development (in eng). Nat Rev Neurosci 6:945–954. https://doi.org/10.1038/nrn1805

    Article  CAS  PubMed  Google Scholar 

  12. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned (in eng). Spine J 11:471–491. https://doi.org/10.1016/j.spinee.2011.04.023

    Article  PubMed  Google Scholar 

  13. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins (in eng). J Mol Biol 238:777–793. https://doi.org/10.1006/jmbi.1994.1334

    Article  CAS  PubMed  Google Scholar 

  14. Zhang JL, Huang Y, Qiu LY, Nickel J, Sebald W (2007) von Willebrand factor type C domain-containing proteins regulate bone morphogenetic protein signaling through different recognition mechanisms (in eng). J Biol Chem 282:20002–20014. https://doi.org/10.1074/jbc.M700456200

    Article  CAS  PubMed  Google Scholar 

  15. Albers CE, Hofstetter W, Sebald HJ, Sebald W, Siebenrock KA, Klenke FM (2012) L51P—A BMP2 variant with osteoinductive activity via inhibition of Noggin (in eng). Bone 51:401–406. https://doi.org/10.1016/j.bone.2012.06.020

    Article  CAS  PubMed  Google Scholar 

  16. Sebald HJ, Klenke FM, Siegrist M, Albers CE, Sebald W, Hofstetter W (2012) Inhibition of endogenous antagonists with an engineered BMP-2 variant increases BMP-2 efficacy in rat femoral defect healing (in eng). Acta Biomater 8:3816–3820. https://doi.org/10.1016/j.actbio.2012.06.036

    Article  CAS  PubMed  Google Scholar 

  17. Khattab HM, Ono M, Sonoyama W, Oida Y, Shinkawa S, Yoshioka Y, Maekawa K, Tabata Y, Sugama K, Sebald W, Kuboki T (2014) The BMP2 antagonist inhibitor L51P enhances the osteogenic potential of BMP2 by simultaneous and delayed synergism (in eng). Bone 69:165–173. https://doi.org/10.1016/j.bone.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  18. Tekari A, May RD, Frauchiger DA, Chan SC, Benneker LM, Gantenbein B (2017) The BMP2 variant L51P restores the osteogenic differentiation of human mesenchymal stromal cells in the presence of intervertebral disc cells (in eng). Eur Cells Mater 33:197–210. https://doi.org/10.22203/eCM.v033a15

    Article  CAS  Google Scholar 

  19. Alberts B (2010) Cell biology: the endless frontier (in eng). Mol Biol Cell 21:3785. https://doi.org/10.1091/mbc.E10-04-0334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. ten Dijke P (2006) Bone morphogenetic protein signal transduction in bone (in eng). Curr Med Res Opin 22:S7–S11. https://doi.org/10.1185/030079906x80576

    Article  PubMed  Google Scholar 

  21. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation (in eng). Int J Biol Sci 8:272–288. https://doi.org/10.7150/ijbs.2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosen V (2009) BMP2 signaling in bone development and repair (in eng). Cytokine Growth Factor Rev 20:475–480. https://doi.org/10.1016/j.cytogfr.2009.10.018

    Article  CAS  PubMed  Google Scholar 

  23. Huang RL, Yuan Y, Tu J, Zou GM, Li Q (2014) Opposing TNF-alpha/IL-1beta- and BMP-2-activated MAPK signaling pathways converge on Runx2 to regulate BMP-2-induced osteoblastic differentiation (in eng). Cell Death Dis 5:e1187. https://doi.org/10.1038/cddis.2014.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hassel S, Schmitt S, Hartung A, Roth M, Nohe A, Petersen N, Ehrlich M, Henis YI, Sebald W, Knaus P (2003) Initiation of Smad-dependent and Smad-independent signaling via distinct BMP-receptor complexes (in eng). J Bone Jt Surg 85-A:44–51

    Article  Google Scholar 

  25. Kimura N, Matsuo R, Shibuya H, Nakashima K, Taga T (2000) BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6 (in eng). J Biol Chem 275:17647–17652. https://doi.org/10.1074/jbc.M908622199

    Article  CAS  PubMed  Google Scholar 

  26. Gallea S, Lallemand F, Atfi A, Rawadi G, Ramez V, Spinella-Jaegle S, Kawai S, Faucheu C, Huet L, Baron R, Roman-Roman S (2001) Activation of mitogen-activated protein kinase cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblast differentiation in pluripotent C2C12 cells (in eng). Bone 28:491–498

    Article  CAS  PubMed  Google Scholar 

  27. Vinals F, Lopez-Rovira T, Rosa JL, Ventura F (2002) Inhibition of PI3K/p70 S6K and p38 MAPK cascades increases osteoblastic differentiation induced by BMP-2 (in eng). FEBS Lett 510:99–104

    Article  CAS  PubMed  Google Scholar 

  28. Yamamoto M, Takahashi Y, Tabata Y (2003) Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein (in eng). Biomaterials 24:4375–4383

    Article  CAS  PubMed  Google Scholar 

  29. Montjovent MO, Siegrist M, Klenke F, Wetterwald A, Dolder S, Hofstetter W (2013) Expression of antagonists of WNT and BMP signaling after non-rigid fixation of osteotomies (in eng). Bone 53:79–86. https://doi.org/10.1016/j.bone.2012.11.027

    Article  CAS  PubMed  Google Scholar 

  30. Wu M, Chen G, Li YP (2016) TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease (in eng). Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  31. Minamizato T, Sakamoto K, Liu T, Kokubo H, Katsube K, Perbal B, Nakamura S, Yamaguchi A (2007) CCN3/NOV inhibits BMP-2-induced osteoblast differentiation by interacting with BMP and Notch signaling pathways (in eng). Biochem Biophys Res Commun 354:567–573. https://doi.org/10.1016/j.bbrc.2007.01.029

    Article  CAS  PubMed  Google Scholar 

  32. Matsushita Y, Sakamoto K, Tamamura Y, Shibata Y, Minamizato T, Kihara T, Ito M, Katsube K, Hiraoka S, Koseki H, Harada K, Yamaguchi A (2013) CCN3 protein participates in bone regeneration as an inhibitory factor (in eng). J Biol Chem 288:19973–19985. https://doi.org/10.1074/jbc.M113.454652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Katsuki Y, Sakamoto K, Minamizato T, Makino H, Umezawa A, Ikeda MA, Perbal B, Amagasa T, Yamaguchi A, Katsube K (2008) Inhibitory effect of CT domain of CCN3/NOV on proliferation and differentiation of osteogenic mesenchymal stem cells, Kusa-A1 (in eng). Biochem Biophys Res Commun 368:808–814. https://doi.org/10.1016/j.bbrc.2008.02.010

    Article  CAS  PubMed  Google Scholar 

  34. Yamaguchi A, Sakamoto K, Minamizato T, Katsube K, Nakanishi S (2008) Regulation of osteoblast differentiation mediated by BMP, Notch, and CCN3/NOV. Jpn Dental Sci Rev 44:48–56. https://doi.org/10.1016/j.jdsr.2007.11.003

    Article  Google Scholar 

  35. Wang Y, Hong S, Li M, Zhang J, Bi Y et al (2013) Noggin resistance contributes to the potent osteogenic capability of BMP9 in mesenchymal stem cells (in eng). J Orthop Res 31:1796–1803. https://doi.org/10.1002/jor.22427

    Article  CAS  PubMed  Google Scholar 

  36. Song K, Krause C, Shi S, Patterson M, Suto R, Grgurevic L, Vukicevic S, van Dinther M, Falb D, Ten Dijke P, Alaoui-Ismaili MH (2010) Identification of a key residue mediating bone morphogenetic protein (BMP)-6 resistance to noggin inhibition allows for engineered BMPs with superior agonist activity (in eng). J Biol Chem 285:12169–12180. https://doi.org/10.1074/jbc.M109.087197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seemann P, Brehm A, Konig J, Reissner C, Stricker S et al (2009) Mutations in GDF5 reveal a key residue mediating BMP inhibition by NOGGIN (in eng). PLoS Genet 5:e1000747. https://doi.org/10.1371/journal.pgen.1000747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khattab HM, Aoyama E, Kubota S, Takigawa M (2015) Physical interaction of CCN2 with diverse growth factors involved in chondrocyte differentiation during endochondral ossification (in eng). J Cell Commun Signal 9:247–254. https://doi.org/10.1007/s12079-015-0290-x

    Article  PubMed  PubMed Central  Google Scholar 

  39. Abreu JG, Ketpura NI, Reversade B, De Robertis EM (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta (in eng). Nat Cell Biol 4:599–604. https://doi.org/10.1038/ncb826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maeda A, Nishida T, Aoyama E, Kubota S, Lyons KM, Kuboki T, Takigawa M (2009) CCN family 2/connective tissue growth factor modulates BMP signalling as a signal conductor, which action regulates the proliferation and differentiation of chondrocytes (in eng). J Biochem 145:207–216. https://doi.org/10.1093/jb/mvn159

    Article  CAS  PubMed  Google Scholar 

  41. Aoyama E, Kubota S, Khattab HM, Nishida T, Takigawa M (2015) CCN2 enhances RANKL-induced osteoclast differentiation via direct binding to RANK and OPG (in eng). Bone 73:242–248. https://doi.org/10.1016/j.bone.2014.12.058

    Article  CAS  PubMed  Google Scholar 

  42. Takigawa M (2017) An early history of CCN2/CTGF research: the road to CCN2 via hcs24, ctgf, ecogenin, and regenerin (in eng). J Cell Commun Signal. https://doi.org/10.1007/s12079-017-0414-6

    Article  PubMed  PubMed Central  Google Scholar 

  43. Smerdel-Ramoya A, Zanotti S, Stadmeyer L, Durant D, Canalis E (2008) Skeletal overexpression of connective tissue growth factor impairs bone formation and causes osteopenia (in eng). Endocrinology 149:4374–4381. https://doi.org/10.1210/en.2008-0254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mundy C, Gannon M, Popoff SN (2014) Connective tissue growth factor (CTGF/CCN2) negatively regulates BMP-2 induced osteoblast differentiation and signaling (in eng). J Cell Physiol 229:672–681. https://doi.org/10.1002/jcp.24491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smerdel-Ramoya A, Zanotti S, Deregowski V, Canalis E (2008) Connective tissue growth factor enhances osteoblastogenesis in vitro (in eng). J Biol Chem 283:22690–22699. https://doi.org/10.1074/jbc.M710140200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Safadi FF, Xu J, Smock SL, Kanaan RA, Selim AH, Odgren PR, Marks SC Jr, Owen TA, Popoff SN (2003) Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo (in eng). J Cell Physiol 196:51–62. https://doi.org/10.1002/jcp.10319

    Article  CAS  PubMed  Google Scholar 

  47. Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response (in eng). FASEB J 18:816–827. https://doi.org/10.1096/fj.03-1273rev

    Article  CAS  PubMed  Google Scholar 

  48. Leask A, Denton CP, Abraham DJ (2004) Insights into the molecular mechanism of chronic fibrosis: the role of connective tissue growth factor in scleroderma (in eng). J Invest Dermatol 122:1–6. https://doi.org/10.1046/j.0022-202X.2003.22133.x

    Article  CAS  PubMed  Google Scholar 

  49. Grotendorst GR (1997) Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts (in eng). Cytokine Growth Factor Rev 8:171–179

    Article  CAS  PubMed  Google Scholar 

  50. Holmes A, Abraham DJ, Sa S, Shiwen X, Black CM, Leask A (2001) CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling (in eng). J Biol Chem 276:10594–10601. https://doi.org/10.1074/jbc.M010149200

    Article  CAS  PubMed  Google Scholar 

  51. Daans M, Lories RJ, Luyten FP (2008) Dynamic activation of bone morphogenetic protein signaling in collagen-induced arthritis supports their role in joint homeostasis and disease (in eng). Arthritis Res Ther 10:R115. https://doi.org/10.1186/ar2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lories RJ, Daans M, Derese I, Matthys P, Kasran A, Tylzanowski P, Ceuppens JL, Luyten FP (2006) Noggin haploinsufficiency differentially affects tissue responses in destructive and remodeling arthritis (in eng). Arthritis Rheum 54:1736–1746. https://doi.org/10.1002/art.21897

    Article  CAS  PubMed  Google Scholar 

  53. Komatsu M, Nakamura Y, Maruyama M, Abe K, Watanapokasin R, Kato H (2015) Expression profiles of human CCN genes in patients with osteoarthritis or rheumatoid arthritis (in eng). J Orthop Sci 20:708–716. https://doi.org/10.1007/s00776-015-0727-3

    Article  CAS  PubMed  Google Scholar 

  54. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST) (in eng). Hum Mol Genet 10:537–543

    Article  CAS  PubMed  Google Scholar 

  55. Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein (in eng). Am J Hum Genet 68:577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kusu N, Laurikkala J, Imanishi M, Usui H, Konishi M, Miyake A, Thesleff I, Itoh N (2003) Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity (in eng). J Biol Chem 278:24113–24117. https://doi.org/10.1074/jbc.M301716200

    Article  CAS  PubMed  Google Scholar 

  57. van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lowik CW (2004) Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist (in eng). J Exp Med 199:805–814. https://doi.org/10.1084/jem.20031454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist (in eng). EMBO J 22:6267–6276. https://doi.org/10.1093/emboj/cdg599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sutherland MK, Geoghegan JC, Yu C, Winkler DG, Latham JA (2004) Unique regulation of SOST, the sclerosteosis gene, by BMPs and steroid hormones in human osteoblasts (in eng). Bone 35:448–454. https://doi.org/10.1016/j.bone.2004.04.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank all his colleagues in the Department of Oral Rehabilitation and Regenerative Medicine, the Department of Biochemistry and Molecular Dentistry, and the Department of Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan, for their generous hosting and all kind assistances during the time taken to accomplish this review. The author also would like to thank Dr. Kristin Sainani A. Professor at Stanford University for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hany Mohamed Khattab.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattab, H.M., Kubota, S., Takigawa, M. et al. The BMP-2 mutant L51P: a BMP receptor IA binding-deficient inhibitor of noggin. J Bone Miner Metab 37, 199–205 (2019). https://doi.org/10.1007/s00774-018-0925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-018-0925-0

Keywords

Navigation