Skip to main content

Advertisement

Log in

Triglyceride metabolism in bone tissue is associated with osteoblast and osteoclast differentiation: a gene expression study

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The role of bone marrow adipocytes in bone tissue is not yet understood. Adipocytes express enzymes for metabolism of free fatty acids and adipokines such as adiponectin, which have been shown to exert different effects on bone cells. Our aim was to find out whether triglyceride (TG) metabolism in bone tissue is associated with osteoblast and osteoclast differentiation by gene expression analysis of lipoprotein lipase (LPL), hormone sensitive lipase (HSL), fatty acid synthase (FASN), adiponectin, RUNX2, RANK, RANKL and OPG. Bone tissue was obtained from patients undergoing hip arthroplasty due to osteoporosis (OP) (50) or osteoarthritis (OA) (48) or from healthy autopsy controls (14). Lower bone mineral density and microstructural parameters were observed in OP compared to OA. The FASN expression did not differ between groups suggesting similar de novo lipogenesis. Lower LPL and HSL in OP suggest lower FFA release and uptake in OP bone tissue. Adiponectin expression was lower in OP than in OA and a trend was seen for controls. These results suggest OP bone has lower TG metabolism than OA and normal bone. In OP bone, lower osteoblastogenesis and higher osteoclast formation were observed and correlation analysis suggests adiponectin, LPL and HSL are associated with higher osteoblastogenesis and lower osteoclastogenesis. This study gives insights into TG metabolism in the human bone microenvironment. We conclude that OP bone tissue exhibits lower osteoblastogenesis, higher osteoclastogenesis and lower TG metabolism compared to OA or healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shen WJ, Liu LF, Patel S, Kraemer FB (2011) Hormone-sensitive lipase-knockout mice maintain high bone density during aging. FASEB J 25:2722–2730

    Article  PubMed  CAS  Google Scholar 

  2. Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B (2011) Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50:546–552

    Google Scholar 

  3. Wang H, Eckel RH (2009) Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 297:E271–E288

    Article  PubMed  CAS  Google Scholar 

  4. Lass A, Zimmermann R, Oberer M, Zechner R (2011) Lipolysis: a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 50:14–27

    Article  PubMed  CAS  Google Scholar 

  5. Liu H, Liu JY, Wu X, Zhang JT (2010) Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker. Int J Biochem Mol Biol 1:69–89

    PubMed  CAS  Google Scholar 

  6. Garbarino J, Sturley SL (2009) Saturated with fat: new perspectives on lipotoxicity. Curr Opin Clin Nutr Metab Care 12:110–116

    Article  PubMed  CAS  Google Scholar 

  7. Maurin A, Chavassieux P, Frappart L, Delmas P, Serre C, Meunier P (2000) Influence of mature adipocytes on osteoblast proliferation in human primary cocultures. Bone 26:485–489

    Article  PubMed  CAS  Google Scholar 

  8. Maurin A, Chavassieux P, Vericel E, Meunier P (2002) Role of polyunsaturated fatty acids in the inhibitory effect of human adipocytes on osteoblastic proliferation. Bone 31:260–266

    Article  PubMed  CAS  Google Scholar 

  9. Elbaz A, Wu X, Rivas D, Gimble J, Duque G (2009) Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med 14:982–991

    Google Scholar 

  10. Cornish J, MacGibbon A, Lin J, Watson M, Callon K, Tong P, Dunford J, van der Does Y, Williams G, Grey A, Naot D, Reid I (2008) Modulation of osteoclastogenesis by fatty acids. Endocrinology 149:5688–5695

    Article  PubMed  CAS  Google Scholar 

  11. Oh SR, Sul OJ, Kim YY, Kim HJ, Yu R, Suh JH, Choi HS (2010) Saturated fatty acids enhance osteoclast survival. J Lipid Res 51:892–899

    Article  PubMed  CAS  Google Scholar 

  12. Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11:327–332

    Article  PubMed  CAS  Google Scholar 

  13. Berner H, Lyngstadaas S, Spahr A, Monjo M, Thommesen L, Drevon C, Syversen U, Reseland J (2004) Adiponectin and its receptors are expressed in bone-forming cells. Bone 35:842–849

    Article  PubMed  CAS  Google Scholar 

  14. Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N, Yamauchi T, Terauchi Y, Kadowaki T, Takeuchi Y, Fukumoto S, Ikeda T, Hoshi K, Chung UI, Nakamura K, Kawaguchi H (2006) Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem 99:196–208

    Article  PubMed  CAS  Google Scholar 

  15. Luo X, Guo L, Yuan L, Xie H, Zhou H, Wu X, Liao E (2005) Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res 309:99–109

    Article  PubMed  CAS  Google Scholar 

  16. Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, Yoshikawa H, Shimomura I (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331:520–526

    Article  PubMed  CAS  Google Scholar 

  17. Yamaguchi N, Kukita T, Li YJ, Kamio N, Fukumoto S, Nonaka K, Ninomiya Y, Hanazawa S, Yamashita Y (2008) Adiponectin inhibits induction of TNF-alpha/RANKL-stimulated NFATc1 via the AMPK signaling. FEBS Lett 582:451–456

    Article  PubMed  CAS  Google Scholar 

  18. Williams G, Wang Y, Callon K, Watson M, Lin J, Lam J, Costa J, Orpe A, Broom N, Naot D, Reid I, Cornish J (2009) In vitro and in vivo effects of adiponectin on bone. Endocrinology 150:3603–3610

    Article  PubMed  CAS  Google Scholar 

  19. Tu Q, Zhang J, Dong LQ, Saunders E, Luo E, Tang J, Chen J (2011) Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1. J Biol Chem 286:12542–12553

    Article  PubMed  CAS  Google Scholar 

  20. Luo X, Guo L, Xie H, Yuan L, Wu X, Zhou H, Liao E (2006) Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res 21:1648–1656

    Article  PubMed  CAS  Google Scholar 

  21. Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, Cortet B (2011) Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:2703–2713

    Article  PubMed  CAS  Google Scholar 

  22. Barbour KE, Zmuda JM, Boudreau R, Strotmeyer ES, Horwitz MJ, Evans RW, Kanaya AM, Harris TB, Bauer DC, Cauley JA (2011) Adipokines and the risk of fracture in older adults. J Bone Miner Res 26:1568–1576

    Article  PubMed  CAS  Google Scholar 

  23. Dequeker J, Boonen S, Aerssens J, Westhovens R (1996) Inverse relationship osteoarthritis-osteoporosis: what is the evidence? What are the consequences? Br J Rheumatol 35:813–818

    Article  PubMed  CAS  Google Scholar 

  24. Vestergaard P, Rejnmark L, Mosekilde L (2009) Osteoarthritis and risk of fractures. Calcif Tissue Int 84:249–256

    Article  PubMed  CAS  Google Scholar 

  25. Dragojevic J, Logar DB, Komadina R, Marc J (2011) Osteoblastogenesis and adipogenesis are higher in osteoarthritic than in osteoporotic bone tissue. Arch Med Res 42:392–397

    Article  PubMed  CAS  Google Scholar 

  26. Arvidsson S, Kwasniewski M, Riano-Pachon DM, Mueller-Roeber B (2008) Quantprime: a flexible tool for reliable high-throughput primer design for quantitative pcr. BMC Bioinf 9:465

    Article  Google Scholar 

  27. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181:1232–1244

    PubMed  CAS  Google Scholar 

  28. Marie P (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473:98–105

    Article  PubMed  CAS  Google Scholar 

  29. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146

    Article  PubMed  CAS  Google Scholar 

  30. Fazzalari NL, Kuliwaba JS, Atkins GJ, Forwood MR, Findlay DM (2001) The ratio of messenger rna levels of receptor activator of nuclear factor kappab ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. J Bone Miner Res 16:1015–1027

    Article  PubMed  CAS  Google Scholar 

  31. Tsangari H, Findlay DM, Kuliwaba JS, Atkins GJ, Fazzalari NL (2004) Increased expression of IL-6 and RANK mRNA in human trabecular bone from fragility fracture of the femoral neck. Bone 35:334–342

    Article  PubMed  CAS  Google Scholar 

  32. Abdallah BM, Stilgren LS, Nissen N, Kassem M, Jorgensen HR, Abrahamsen B (2005) Increased RANKL/OPG mRNA ratio in iliac bone biopsies from women with hip fractures. Calcif Tissue Int 76:90–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by research programs P3-0298 and J3-2330 of the Research Agency of Slovenia. We thank the patients participating in our study for donating bone tissue. We thank Tina Žuran and Metka Košir for their help with RNA isolation and qPCR experiments, Viktor Jović for bone biopsies of autopsy cases and Franci Vindišar for OP and OA bone tissue.

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janja Marc.

About this article

Cite this article

Dragojevič, J., Zupan, J., Haring, G. et al. Triglyceride metabolism in bone tissue is associated with osteoblast and osteoclast differentiation: a gene expression study. J Bone Miner Metab 31, 512–519 (2013). https://doi.org/10.1007/s00774-013-0445-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-013-0445-x

Keywords

Navigation