Skip to main content

Advertisement

Log in

Analysis of factors affecting increase in bone mineral density at lumbar spine by bisphosphonate treatment in postmenopausal osteoporosis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Bisphosphonate is an effective drug to reduce fracture risk in osteoporotic patients; however, factors affecting the efficacy of bisphosphonate treatment are not fully known, especially in Japanese patients. In the present study, we examined the relationships between an increase in lumbar spine bone mineral density (BMD) by bisphosphonates and several pretreatment parameters, including biochemical, bone/mineral, and body composition indices, in 85 postmenopausal osteoporotic patients treated with alendronate or risedronate. BMD increase was measured by dual-energy X-ray absorptiometry at the lumbar spine before and 2 years after treatment. BMD increase at the lumbar spine was observed as independent of age, height, weight, body mass index, and fat mass, although lean body mass seemed slightly related. On the other hand, fasting plasma glucose (FPG) levels were significantly and positively related to BMD increase at the lumbar spine. In multiple regression analysis, FPG levels were not significantly related to BMD increase at the lumbar spine when lean body mass was considered. As for bone/mineral parameters, BMD increase at the lumbar spine was not significantly related to serum levels of calcium, parathyroid hormone (PTH), and alkaline phosphatase or urinary levels of deoxypiridinoline and calcium excretion. As for BMD parameters, Z-scores of BMD at any site and bone geometry parameters obtained by forearm peripheral quantitative computed tomography were not significantly related to BMD increase at the lumbar spine. BMD increases at the lumbar spine were similar between groups with or without vertebral fractures. In conclusion, BMD increase at the lumbar spine by bisphosphonate treatment was not related to any pretreatment parameters, including body size, body composition, and bone/mineral metabolism in postmenopausal Japanese women with primary osteoporosis, although FPG correlated partly to BMD through lean body mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liberman UA, Weiss SR, Broll J, Minne HW, Quan H, Bell NH, Rodoriguez-Portales J, Downs RW, Dequeker J, Favus M, Seeman E, Recker RR, Capizzi T, Santora AC, Lombardi A, Shan RV, Hirsch LJ, Karpf DB, for The Alendronate Phase III Osteoporosis Treatment Study Group (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 333:1437–1443

    Article  PubMed  CAS  Google Scholar 

  2. Cranney A, Wells G, Willan A, Griffith L, Zytaruk N, Robinson V, Black D, Adachi J, Shea B, Tugwell P, Guyatt G, The Osteoporosis Methodology Group, The Osteoporosis Research Advisory Group (2002) Meta-analysis of alendronate for the treatment of postmenopausal women. Endocr Rev 23:508–516

    Article  PubMed  CAS  Google Scholar 

  3. Cranney A, Tugwell P, Adachi J, Weaver B, Zytaruk N, Papaioannou A, Robinson V, Shea B, Wells G, Guyatt G, The Osteoporosis Methodology Group, The Osteoporosis Research Advisory Group (2002) Meta-analysis of risedronate for the treatment of postmenopausal women. Endocr Rev 23:517–523

    Article  PubMed  CAS  Google Scholar 

  4. Ensrud KE, Lipschtz RC, Cauley JA, Seeley D, Nevitt MC, Scott J, Orwoll ES, Genant HK, Cummings SR (1997) Body size and hip fracture risk in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Am J Med 103:274–280

    Article  PubMed  CAS  Google Scholar 

  5. Hochberg MC, Thompson DE, Black DM, Quandt SA, Cauley J, Geusens P, Ross PD, Baran D (2005) Effect of alendronate on the age-specific incidence of symptomatic osteoporotic fractures. J Bone Miner Res 20:971–976

    Article  PubMed  CAS  Google Scholar 

  6. Cummings SR, Black DM, Thompson DE, Applegate WB, Barrett-Connor E, Musliner TA, Parlermo L, Prineas R, Rubin SM, Scott JC, Vogt T, Wallace R, Yates AJ, LaCroix AZ (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the fracture intervention trial. JAMA 280:2077–2082

    Article  PubMed  CAS  Google Scholar 

  7. Kanis JA, Barton IP, Johnell O (2005) Risedronate decreases fracture risk in patients selected solely on the basis of prior vertebral fracture. Osteoporos Int 16:475–482

    Article  PubMed  CAS  Google Scholar 

  8. Shimon I, Eshed V, Doolman R, Sela BA, Karasik A, Vered I (2005) Alendronate for osteoporosis in men with androgen-repleted hypogonadism. Osteoporos Int 16:1591–1596

    Article  PubMed  CAS  Google Scholar 

  9. Jamal SA, Bauer DC, Ensrud KE, Cauley JA, Hochberg M, Ishani A, Cummings SR (2007) Alendronate treatment in women with normal to severely impaired renal function: an analysis of the fracture intervention trial. J Bone Miner Res 22:503–508

    Article  PubMed  CAS  Google Scholar 

  10. Parker CR, Blackwell PJ, Fairbairn KJ, Hosking DJ (2002) Alendronate in the treatment of primary hyperparathyroid-related osteoporosis: a 2-year study. J Clin Endocrinol Metab 87:4482–4489

    Article  PubMed  CAS  Google Scholar 

  11. Nawata H, Soen S, Takayanagi R, Tanaka I, Takaoka K, Fukunaga M, Matsumoto T, Suzuki Y, Tanaka H, Fujiwara S, Miki T, Sagawa A, Nishizawa Y, Seino Y (2005) Guidelines on the management and treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral Research. J Bone Miner Metab 23:105–109

    Article  PubMed  Google Scholar 

  12. Bauer DC, Garnero P, Hochberg MC, Santora A, Delmas P, Ewing SK, Black DM (2006) Pretreatment levels of bone turnover and the antifracture efficacy of alendronate: the fracture intervention trial. J Bone Miner Res 21:292–299

    Article  PubMed  CAS  Google Scholar 

  13. Orimo H, Hayashi Y, Fukunaga H et al (2001) Diagnostic criteria of primary osteoporosis (2000 revision). Jpn J Bone Miner Res 18:76–82

    Google Scholar 

  14. Chen Q, Kaji H, Iu MF, Nomura R, Sowa H, Yamauchi M, Tsukamoto T, Sugimoto T, Chihara K (2003) Effects of an excess and a deficiency of endogenous parathyroid hormone on volumetric bone mineral density and bone geometry determined by peripheral quantitative computed tomography in female subjects. J Clin Endocrinol Metab 88:4655–4658

    Article  PubMed  CAS  Google Scholar 

  15. Ruegsegger P, Durand E, Dambacher MA (1991) Localization of regional forearm bone loss from high-resolution computed tomographic images. Osteoporos Int 1:76–80

    Article  PubMed  CAS  Google Scholar 

  16. Mazess RB, Barden HS, Bisek JP, Hanson J (1990) Dual energy X-ray absorptiometry for total-body and regional bone mineral and soft tissue composition. Am J Clin Nutr 51:1106–1112

    PubMed  CAS  Google Scholar 

  17. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes: a meta-analysis. Osteoporos Int 18:427–444

    Article  PubMed  CAS  Google Scholar 

  18. Hofbauer LC, Brueck CC, Singh SK, Dobnig H (2007) Review: osteoporosis in patients with diabetes mellitus. J Bone Miner Res 22:1317–1328

    Article  PubMed  CAS  Google Scholar 

  19. de Liefde II, va der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA (2005) Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int 16:1713–1720

    Article  PubMed  Google Scholar 

  20. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, Johnson KC, Margolis KL (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 91:3404–3410

    Article  PubMed  CAS  Google Scholar 

  21. Nicodemus KK, Folsom AR (2001) Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24:1192–1197

    Article  PubMed  CAS  Google Scholar 

  22. Inaba M, Terada M, Koyama H, Yoshida O, Ishimura E, Kawagishi T, Okuno Y, Nishizawa Y, Otani S, Morii H (1995) Influence of high glucose on 1, 25-dihydroxyvitamin D3-induced effect on human osteoblast-like MG-63 cells. J Bone Miner Res 10:1050–1056

    Article  PubMed  CAS  Google Scholar 

  23. Bouillon R, Bex M, Van Herck E, Laureys J, Dooms L, Lesaffre E, Ravussin E (1995) Influence of age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes mellitus. J Clin Endocrinol Metab 80:1194–1202

    Article  PubMed  CAS  Google Scholar 

  24. Lu H, Kraut D, Gerstenfeld LC, Graves DT (2003) Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology 144:346–352

    Article  PubMed  CAS  Google Scholar 

  25. Dobnig H, Piswanger-Solkner JC, Roth M, Obermayer-Pietsch B, Tiran A, Strele A, Maier E, Maritschnegg P, Sieberer C, Fahrleitner-Pammer A (2006) Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab 91:3355–3363

    Article  PubMed  CAS  Google Scholar 

  26. Yamaguchi T, Kanatani M, Yamauchi M, Kaji H, Sugishita T, Baylink DJ, Mohan S, Chihara K, Sugimoto T (2006) Serum levels of insulin-like growth factor (IGF); IGF-binding proteins-3, -4, and -5: their relationships to bone mineral density and the risk of vertebral fractures in postmenopausal women. Calcif Tissue Int 78:18–24

    Article  PubMed  CAS  Google Scholar 

  27. Nakaoka D, Sugimoto T, Kaji H, Kanzawa M, Yano S, Yamauchi M, Sugishita T, Chihara K (2001) Determinants of bone mineral density and spinal fracture risk in postmenopausal Japanese women. Osteoporos Int 12:548–554

    Article  PubMed  CAS  Google Scholar 

  28. Kinjo M, Setoguchi S, Solomon DH (2007) Bone mineral density in adults with the metabolic syndrome: analysis in a population-based US sample. J Clin Endocrinol Metab 92:4161–4164

    Article  PubMed  CAS  Google Scholar 

  29. von Muhlen D, Safii S, Jassal SK, Svartberg J, Barrett-Conner E (2007) Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study. Osteoporos Int 18:1337–1344

    Article  Google Scholar 

  30. Seibel MJ, Naganathan V, Barton I, Grauer A (2004) Relationship between pretreatment bone resorption and vertebral fracture incidence in postmenopausal osteoporotic women treated with risedronate. J Bone Miner Res 19:323–329

    Article  PubMed  CAS  Google Scholar 

  31. Mezquita-Raya P, Munoz-Torres M, Luna JD, Luna V, Lopez-Rodriguez F, Torres-Vela E, Escobar-Jimenez F (2001) Relation between vitamin D insufficiency, bone density, and bone metabolism in healthy postmenopausal women. J Bone Miner Res 16:1408–1415

    Article  PubMed  CAS  Google Scholar 

  32. Pasco JA, Henry MJ, Kotowicz MA, Sanders KM, Seeman E, Pasco JR, Schneider HG, Nicholson GC (2004) Seasonal periodicity of serum vitamin D and parathyroid hormone, bone resorption, and fractures: the Geelong osteoporosis study. J Bone Miner Res 19:752–758

    Article  PubMed  CAS  Google Scholar 

  33. Souberbielle JC, Cormier C, Kindermans C, Gao P, Cantor T, Forette F, Baulieu EE (2001) Vitamin D status and redefining serum parathyroid hormone reference range in the elderly. J Clin Endocrinol Metab 86:3086–3090

    Article  PubMed  CAS  Google Scholar 

  34. Watts NB, Gausens P, Barton IP, Felsenberg D (2005) Relationship between changes in BMD and nonvertebral fracture incidence associated with risedronate: reduction in risk of nonvertebral fracture is not related to change in BMD. J Bone Miner Res 20:2097–2104

    Article  PubMed  Google Scholar 

  35. Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD (2002) Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 87:1586–1592

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kaji.

About this article

Cite this article

Kaji, H., Hisa, I., Inoue, Y. et al. Analysis of factors affecting increase in bone mineral density at lumbar spine by bisphosphonate treatment in postmenopausal osteoporosis. J Bone Miner Metab 27, 76–82 (2009). https://doi.org/10.1007/s00774-008-0005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0005-y

Keywords

Navigation