Skip to main content
Log in

Neue Entwicklungen in der systemischen Therapie des kleinzelligen Lungenkarzinoms

New developments in systemic treatment of small cell lung cancer

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Das kleinzellige Lungenkarzinom (SCLC) macht etwa 20 % aller Lungenkarzinome aus. Trotz hoher initialer Sensitivät gegenüber Chemotherapie kommt es schnell zu einer Resistenzentwicklung und innerhalb kurzer Zeit zum Tod des Patienten.

Methode

Der aktuelle Artikel basiert auf einer selektiven Literaturrecherche, die zum Ziel hatte, die aktuellsten und vielversprechendsten Daten zu potenziellen therapeutischen Targets zu identifizieren. Die derzeit bekannte und als Vollpublikation oder auch als Abstract publizierte Datenlage wird dargestellt.

Ergebnisse

Im Gegensatz zum nichtkleinzelligen Lungenkarzinom (NSCLC), das inzwischen molekular charakterisiert ist und bei dem eine Immuntherapie bei etwa 25–30 % der Patienten bereits Standard in der Erstlinientherapie ist, sind die Fortschritte beim SCLC deutlich langsamer. Ein besonderes Augenmerk wird auf die Immuncheckpointinhibitoren und auf eine neue Zielstruktur, „delta-like canonical notch ligand 3“ (DLL3), gerichtet. Beide Ansätze befinden sich im fortgeschrittenen Stadium der klinischen Evaluation.

Abstract

Background

Approximately 20% of all lung cancers are small cell lung cancer (SCLC). Despite initially being extremely sensitive to chemotherapy, SCLC rapidly develops resistance to chemotherapy, which ultimately results in the death of most patients after a short period of time.

Method

This review is based on a selective literature search with the aim of identifying the most recent data on therapeutic target structures and includes full papers as well as abstracts presented at international meetings.

Results

In contrast to non-small cell lung cancer (NSCLC), which has been molecularly defined and for which first line immune checkpoint inhibitors are the standard of care in approximately 25–30% of patients, progress has been slower in SCLC; however, on the basis of refined biochemical methods, new potentially interesting therapeutic targets including immune checkpoint inhibitors are available. Emphasis is placed on immune checkpoint inhibitors as well as the new target structure delta-like canonical notch ligand 3 (DLL3). Both approaches are currently being evaluated in clinical trials, which are currently recruiting also in Germany and the results are eagerly awaited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Sourisseau T, Hassan KA, Wistuba I et al (2014) Lung cancer stem cell: fancy conceptual model of tumor biology or cornerstone of a forthcoming therapeutic breakthrough? J Thorac Oncol 9:7–17

    Article  PubMed  Google Scholar 

  2. Tam WL, Lu H, Buikhuisen J et al (2013) Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell 24:347–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18:460–466

    Article  CAS  PubMed  Google Scholar 

  4. Tam WL, Ng HH (2014) Sox2: masterminding the root of cancer. Cancer Cell 26:3–5

    Article  CAS  PubMed  Google Scholar 

  5. Kaiser J (2015) The cancer stem cell gamble. Science 347:226–229

    Article  CAS  PubMed  Google Scholar 

  6. Semenova EA, Nagel R, Berns A (2015) Origins, genetic landscape, and emerging therapies of small cell lung cancer. Genes Dev 29:1447–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hook KE, Garza SJ, Lira ME et al (2012) An integrated genomic approach to identify predictive biomarkers of response to the aurora kinase inhibitor PF-03814735. Mol Cancer Ther 11:710–719

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Fang B, Kinose F et al (2016) Target identifi cation in small cell lung cancer via integrated phenotypic screening and activity-based protein profi ling. Mol Cancer Ther 15:334–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Melichar B, Adenis A, Lockhart AC et al (2015) Safety and activity of alisertib, an investigational aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol. doi:10.1016/S1470-2045(15)70051-3

    Google Scholar 

  10. Owonikoko TK, Nackaerts K, Csoszi T et al (2016) Randomized phase 2 study of investigational aurora A kinase (AAK) inhibitor alisertib (MLN8237) + paclitaxel (P) vs placebo + P as second line therapy in relapsed SCLC. Ann Oncol 27(suppl 6):abstr 1423O

    Google Scholar 

  11. Owonikoko TK, Nackaerts K, Csoszi T et al (2016) Randomized Phase 2 Study of the Investigational Aurora A Kinase (AAK) Inhibitor Alisertib (MLN8237) + Paclitaxel vs Placebo + Paclitaxel as Second-Line Therapy for Small Cell Lung Cancer (SCLC). WCLC, S abstr 4855

    Google Scholar 

  12. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Byers LA, Rudin CM (2015) Small cell lung cancer: Where do we go from here? Cancer 121:664–672

    Article  CAS  PubMed  Google Scholar 

  14. Peifer M, Fern’andez-Cuesta L, Sos ML et al (2012) Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44:1104–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Darnell RB (1996) Onconeural antigens and the paraneoplastic neurologic disorders: At the intersection of cancer, immunity, and the brain. Proc Natl Acad Sci USA 93:4529–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koyama K, Kagamu H, Miura S et al (2008) Reciprocal CD4+ T‑cell balance of effector CD62Llow CD4+ and CD62LhighCD25+ CD4+ regulatory T cells in small cell lung cancer reflects disease stage. Clin Cancer Res 14:6770–6779

    Article  CAS  PubMed  Google Scholar 

  17. Ishii H, Azuma K, Kawahara A et al (2015) Significance of programmed cell death-ligand 1 expression and its association with survival in patients with small cell lung cancer. J Thorac Oncol 10(3):426–430

    Article  CAS  PubMed  Google Scholar 

  18. YERVOY® (ipilimumab), package insert.Bristol-Myers Squibb Company, NJ, USA.

  19. YERVOY® (ipilimumab), product information. Bristol-Myers Squibb Pharma EEIG, Uxbridge, UK.

  20. Reck M, Bondarenko I, Luft A et al (2013) Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: Results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol 24:75–83

    Article  CAS  PubMed  Google Scholar 

  21. Reck M, Luft A, Szczesna A, Havel L, Sang-We K, Akerley W, Pietanza MC, Wu Y‑L, Zielinski C, Thomas M, Felip E, Gold K, Horn L, Aerts J, Nakagawa K, Lorigan P, Pieters A, Kong Sanchez T, Fairchild J, Spigel D (2016) Phase III randomized trial of Ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J Clin Oncol 34:3740–3748

    Article  Google Scholar 

  22. Ilie M, Hofman V, Long E et al (2016) PD-L1 expression in primary tumor and circulating tumor cells in patients with small cell lung carcinomas. American Association of Cancer Research, New Orleans, April 16–20, S abstr 2220

    Google Scholar 

  23. Ott PA, Elez Fernandez ME, Hiret S et al (2015) Pembrolizumab for extensive-stage SCLC: Efficacy and relationship with PD-L1 expression. 16th World Conference on Lung Cancer, Denver, September 6–9, S abstr 3285

    Google Scholar 

  24. Antonia SJ, Lo’ pez-Martin JA, Bendell J et al (2016) Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): A multicentre, open-label, phase 1/2 trial. Lancet Oncol. doi:10.1016/S1470-2045(16)30098-5

    Google Scholar 

  25. Onkopedia https://www.onkopedia.com/de/onkopedia/guidelines/lungenkarzinom-nicht-kleinzellig-nsclc/@@view/html/index.html. Zugegriffen: 2017

  26. Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL (2011) Notch inhibition by the ligand DELTA-LIKE 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet 20:905–916

    Article  CAS  PubMed  Google Scholar 

  27. Dunwoodie SL, Henrique D, Harrison SM, Beddington RS (1997) Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124:3065–3076

    CAS  PubMed  Google Scholar 

  28. Saunders LR, Bankovich AJ, Anderson WC et al (2015) A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med 7:302ra136

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS, Byers LA, Johnson ML, Burris HA III, Robert F III, Han TH, Bheddah S, Theiss N, Watson S, Mathur D, Vennapusa B, Zayed H, Lally S, Strickland DK, Govindan R, Dylla SJ, Peng SL, Spigel DR (2017) Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol 18:42–51

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Griesinger.

Ethics declarations

Interessenkonflikt

Advisory Boards: Ariad, Astra-Zeneca, Boehringer-Ingelheim, Bristol-Myer-Squibb, Celgene, Clovis, Lilly, Merck-Sharp-Dome, Novartis, Pfizer, Roche. Travel Support: Ariad, Astra-Zeneca, Boehringer-Ingelheim, Bristol-Myer-Squibb, Celgene, Lilly, Merck-Sharp-Dome, Novartis, Pfizer, Roche. Scientific Support: Astra-Zeneca, Boehringer-Ingelheim, Bristol-Myer-Squibb, Celgene, Lilly, Merck-Sharp-Dome, Novartis, Pfizer, Roche. Shares: none. Anstellung: keine.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griesinger, F. Neue Entwicklungen in der systemischen Therapie des kleinzelligen Lungenkarzinoms. Onkologe 23, 355–359 (2017). https://doi.org/10.1007/s00761-017-0212-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-017-0212-z

Schlüsselwörter

Keywords

Navigation