Skip to main content
Log in

Design and Optimization of a Four-Channel Received Coil for Vertical-Field MRI

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Signal-to-noise ratio (SNR) is an important factor in magnetic resonance imaging (MRI), and it strongly depends on the structure of radio frequency (RF) coils. To obtain a high SNR and uniform image in a vertical-field MRI at 0.5 T, a four-channel received coil has been designed and optimized by establishing the relationship between coil geometry and SNR. Then, the most efficient design of coil array is optimized by the Particle Swarm Optimization (PSO) algorithm. After optimization, the coil is manufactured, where the decoupling is implemented with only inductors and operated at the permanent magnet MRI system built in our laboratory. Finally, SNR map with pixel-by-pixel manner is applied to evaluate the imaging quality, which shows the accuracy between simulated and experimental results. Furthermore, a higher SNR and a more homogeneity in the image have been achieved by the optimized coil array. Hence, this optimized design for the phased-array received coil in vertical-field MRI is verified and applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.B. Roemer, W.A. Edelstein, C.E. Hayes et al., Magn. Reson. Med. 16(2), 192–225 (1990)

    Article  Google Scholar 

  2. S.M. Wright, L.L. Wald, NMR Biomed. 10(8), 394–410 (1997)

    Article  Google Scholar 

  3. K.P. Pruessmann, M. Weiger, M.B. Scheidegger et al., Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  4. M. Weiger, K.P. Pruessmann, C. Leussler et al., Magn. Reson. Med. 45(3), 495–504 (2001)

    Article  Google Scholar 

  5. M. Weiger, K.P. Pruessmann, P. Boesiger, Magn. Reson. Mater. Phys. Biol. Med. 14(1), 10–19 (2002)

    Article  Google Scholar 

  6. J.A. de Zwart, P.J. Ledden, P. Kellman et al., Magn. Reson. Med. 47(6), 1218–1227 (2002)

    Article  Google Scholar 

  7. B.G. Lawrence, S. Crozier, G. Cowin et al., Biomed. Eng. IEEE Trans. 49(9), 1024–1030 (2002)

    Article  Google Scholar 

  8. A. Liffers, H.H. Quick, C.U. Herborn et al., Magn. Reson. Med. 50(2), 439–443 (2003)

    Article  Google Scholar 

  9. Dodd SJ, Merkle H, Van Gelderen P, et al., Proc. 13th Intl. Soc. Mag. Reson. Med. (2005), p. 913

  10. L.T. Muftuler, G. Chen, O. Nalcioglu, Phys. Med. Biol. 51(24), 6457 (2006)

    Article  Google Scholar 

  11. G. Chen, L.T. Muftuler, S.H. Ha et al., J. Magn. Reson. 186(2), 273–281 (2007)

    Article  ADS  Google Scholar 

  12. J. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging (CRC Press, Boca Raton, 1998)

    Google Scholar 

  13. M. Takizawa, T. Goto, H. Mochizuki et al., Magn Reson Med Sci 3(1), 45–49 (2004)

    Article  Google Scholar 

  14. L. Feng, V. Chen, Y.L.Yang, in Proc. 12th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Kyoto (2004), p. 1600

  15. Perkins TG, Murdoch JB, Goss B, International Society for Magnetic Resonance in Medicine 17th Scientific Meeting and Exhibition. 2007, p. 18–24

  16. B. Wu, P. Qu, C. Wang et al., Concepts Magn. Reson. Part B Magn. Reson. Eng. 31(2), 116–126 (2007)

    Article  Google Scholar 

  17. A. Taflove, S.C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, vol. 1995, 2nd edn. (Artech House, Norwood, 1995)

    MATH  Google Scholar 

  18. S. Li, Q.X. Yang, M.B. Smith, Magn. Reson. Imaging 12(7), 1079–1087 (1994)

    Article  Google Scholar 

  19. J.M. Jin, The Finite Element Method in Electromagnetics (Wiley, New Jersey, 2014)

    MATH  Google Scholar 

  20. R.F. Harrington, J.L. Harrington, Field Computation by Moment Methods (Oxford University Press, Oxford, 1996)

    MATH  Google Scholar 

  21. T.J. Lawry, M.W. Weiner, G.B. Matson, Magn. Reson. Med. 16(2), 294–302 (1990)

    Article  Google Scholar 

  22. P. Spincemaille, R. Brown, Y. Qian et al., Magn. Reson. Imaging 25(5), 671–677 (2007)

    Article  Google Scholar 

  23. K. Uutela, M. Hämäläinen, R. Salmelin, Biomed. Eng. IEEE Trans. 45(6), 716–723 (1998)

    Article  Google Scholar 

  24. J. Kennedy, Particle Swarm Optimization. Encyclopedia of Machine Learning (Springer, Berlin, 2010), pp. 760–766

    Google Scholar 

  25. H. Imai, T. Miyati, A. Ogura et al., Nihon Hoshasen Gijutsu Gakkai Zasshi 64(8), 930–936 (2008)

    Article  Google Scholar 

  26. T. Yoshida, K. Shirata, A. Urikura et al., Radiol. Phys. Technol. 8(2), 305–311 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Project Grants YZ201445, YZ201313 from the Chinese Academy of Sciences Research and Development Project for Equipment and BK20131171 from Jiangsu Science and Technology Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Xu, Y., Chang, Y. et al. Design and Optimization of a Four-Channel Received Coil for Vertical-Field MRI. Appl Magn Reson 47, 1147–1158 (2016). https://doi.org/10.1007/s00723-016-0822-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0822-4

Keywords

Navigation