Skip to main content

Advertisement

Log in

A DFT, X- and W-band EPR and ENDOR Study of Nitrogen-Centered Species in (Nano)Hydroxyapatite

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Incorporation of the nitrogen-containing impurities in hydroxyapatite (HAp) powders with the sizes of the crystallites of (20–50) nm was studied using first-principles modeling combined with the multi-frequency (9 and 94 GHz) electron paramagnetic resonance (EPR) methods. It is shown that the observed EPR spectra are undoubtedly due to the presence of the bulk radiation-induced NO3 2− radicals. This conclusion is based on spin-polarized density functional theory calculations of spectroscopic parameters within gauge-including projector augmented wave framework followed by the exact comparison of the simulated EPR and electron–nuclear double resonance spectra with the experimental findings. In addition, a comprehensive analysis of the simulated properties allows us to suggest that the paramagnetic centers preferably occupy PO4 3− sites in the HAp structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.Z. LeGeros, Clin. Orthop. Relat. R. 395, 81–98 (2002)

    Article  Google Scholar 

  2. H. Zhou, J. Lee, Acta Biomater. 7, 2769–2781 (2011)

    Article  Google Scholar 

  3. S.C.J. Loo, T. Moore, B. Banik, F. Alexis, Curr. Pharm. Biotechnol. 11, 333–342 (2010)

    Article  Google Scholar 

  4. V. Uskoković, D.P. Uskoković, J. Biomed. Mater. Res. A 96B, 152–191 (2011)

    Article  Google Scholar 

  5. S.H. Chu, D.F. Feng, Y.B. Ma, Z.Q. Li, Int. J. Nanomed. 7, 3659–3666 (2012)

    Article  Google Scholar 

  6. J.C. Elliot, Stud. Inorg. Chem. 18, 1–389 (1994)

    Google Scholar 

  7. R.M. Aminova, L.F. Galiullina, N.I. Silkin, A.R. Ulmetov, V.V. Klochkov, A.V. Aganov, J. Mol. Struc. 1049, 13–21 (2013)

    Article  ADS  Google Scholar 

  8. Q.Y. Ma, S.J. Traina, T.J. Logan, J.A. Ryan, Environ. Sci. Technol. 27, 1803–1810 (1993)

    Article  ADS  Google Scholar 

  9. N. Mizuno (ed.), Modern Heterogeneous Oxidation Catalysis: Design, Reactions and Characterization (Wiley-VCH, Weinheim, 2009)

  10. M. Jarcho, C.H. Bolen, M.B. Thomas, J. Bobick, J.F. Kay, R.H. Doremus, J. Mater. Sci. 11, 2027–2035 (1976)

    Article  ADS  Google Scholar 

  11. S Kehoe, Ph.D. Thesis (City University, Dublin, 2008)

  12. M. Valko, D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, J. Telser, Int. J. Biochem. Cell Biol. 39, 44–84 (2007)

    Article  Google Scholar 

  13. A.B. Brik, A.P. Shpak, A.P. Klimenko, V.L. Karbovsky, V.A. Dubok, A.M. Kalinichenko, N.N. Bagmut, V.V. Bevz, Miner. J. (Ukraine) 28, 20–31 (2006). (in Russian)

    Google Scholar 

  14. V.A. Abdul’yanov, L.F. Galiullina, A.S. Galyavich, V.G. Izotov, G.V. Mamin, S.B. Orlinskii, A.A. Rodionov, M.Kh. Salakhov, N.I. Silkin, L.M. Sitdikova, R.N. Khairullin, Yu.A. Chelyshev, JETP Lett. 88, 69–73 (2008)

    Article  ADS  Google Scholar 

  15. M.R. Gafurov, B.V. Yavkin, T.B. Biktagirov, G.V. Mamin, S.B. Orlinskii, V.V. Izotov, M.Kh. Salakhov, E.S. Klimashina, V.I. Putlayev, V.A. Abdulyanov, I.M. Ignatjev, R.N. Khairullin, A.V. Zamochkin, Yu.A. Chelyshev, Magn. Reson. Solids 15, 13102 (2013)

    Google Scholar 

  16. T.B. Biktagirov, Yu.A. Chelyshev, M.R. Gafurov, G.V. Mamin, S.B. Orlinskii, Y.N. Osin, M.Kh. Salakhov, J. Phys: Conf. Ser. 478, 012002 (2013)

    ADS  Google Scholar 

  17. B.V. Yavkin, M.R. Gafurov, S.S. Kharintsev, G.V. Mamin, E. Goovaerts, M.Kh. Salakhov, Yu.N. Osin, S.B. Orlinskii, J. Phys Conf. Ser. 478, 012001 (2013)

    Article  ADS  Google Scholar 

  18. M.V.J. Hukkanen, J.M. Polak, S.P.F. Hughes, Nitric Oxide in Bone and Joint Disease (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  19. Z.L. Shi, X. Huang, Y.R. Cai, R.K. Tang, D.S. Yang, Acta Biomater. 5, 338–345 (2009)

    Article  Google Scholar 

  20. J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd edn. (John Wiley & Sons, Hoboken, New Jersey, 2004)

    Google Scholar 

  21. S.S. Eaton, G.R. Eaton, L.J. Berliner, Biomedical EPR - Part A: Free Radicals, Metals, Medicine and Physiology (Springer, New York, 2005)

    Google Scholar 

  22. A.P. Burlaka, I.I. Ganusevich, M.R. Gafurov, S.N. Lukin, E.P. Sidorik, Cancer Microenvir. 6, 273–276 (2013)

    Article  Google Scholar 

  23. P. Fattibene, F. Callens, Appl. Radiat. Isot. 68, 2033–2116 (2010)

    Article  Google Scholar 

  24. M.R. Gafurov, T.B. Biktagirov, B.V. Yavkin, G.V. Mamin, Y.Y. Filippov, E.S. Klimashina, V.I. Putlayev, S.B. Orlinskii, JETP Lett. 99, 196–203 (2014)

    Article  ADS  Google Scholar 

  25. T. Biktagirov, M.R. Gafurov, G.V. Mamin, E.S. Klimashina, V.I. Putlayev, S.B. Orlinskii, J. Phys. Chem. A 118, 1519–1526 (2014)

    Article  Google Scholar 

  26. B.V. Yavkin, G.V. Mamin, S.B. Orlinskii, M.R. Gafurov, M.Kh. Salakhov, T.B. Biktagirov, E.S. Klimashina, V.I. Putlayev, Yu.D. Tretyakov, N.I. Silkin, Phys. Chem. Chem. Phys. 14, 2246–2249 (2012)

    Article  Google Scholar 

  27. A.P. Lozhkin, T.B. Biktagirov, V.A. Abdul’yanov, O.V. Gorshkov, E.V. Timonina, G.V. Mamin, S.B. Orlinskii, N.I. Silkin, V.M. Chernov, R.N. Khairullin, O.N. Ilinskaya, Biochem. (Moscow) Supp. Ser. B Biom. Chem 5, 158–162 (2011)

    Article  Google Scholar 

  28. N.I. Silkin, Yu.A. Chelyshev, G.V. Mamin, S.B. Orlinskii, M.Kh. Salakhov. A method for detection of manganese paramagnetic complexes as markers of atherosclerosis (RF Patent No 2468368, 2012) (in Russian)

  29. N.I. Silkin, M.Kh. Salakhov, S.B. Orlinskii, G.V. Mamin, Yu.A. Chelyshev, L.F. Galiullina, G.A. Tokarev, E.S. Igumnov, M.R. Gafurov. A method for determination of substitutional nitrogen species in hydroxiapatite (RF Patent No 2465573 2012) (in Russian)

  30. J.R. Morton, Chem. Rev. 64, 453–471 (1964)

    Article  Google Scholar 

  31. R.P. Wayne, H. Sidebottom, G. Restelli, G. Poulet, D. Perner, G.K. Moortgat, G. Le Bras, J. Hjorth, C.E. Canosa-Mas, J.P. Burrows, P. Biggs, I. Barnes, Atmos. Environ. 25A, 1–203 (1991)

    Article  ADS  Google Scholar 

  32. R.S. Eachus, M.C.R. Symons, J. Chem. Soc. A, 790-793 (1968)

  33. R.A. Peckauskas, I. Pullman, J. Dent. Res. 54, 1096 (1975)

    Article  Google Scholar 

  34. S.I. Bannov, V.A. Nevostruev, Radiat. Phys. Chem. 68, 917–924 (2003)

    Article  ADS  Google Scholar 

  35. I.P. Vorona, S.S. Ishchenko, N.P. Baran, V.V. Rudko, I.V. Zatovskii, N.A. Gorodilova, V.Y. Povarchuk, Phys. Solid State 52, 2364–2368 (2010)

    Article  ADS  Google Scholar 

  36. N.P. Baran, I.P. Vorona, S.S. Ishchenko, V.V. Nosenko, I.V. Zatovskii, N.A. Gorodilova, V.Y. Povarchuk, Phys. Solid State 53, 1891–1894 (2011)

    Article  ADS  Google Scholar 

  37. D. Walsh, J. Chem. Soc., 2301-2306 (1953)

  38. P.W. Atkins, M.C.R. Symons, The Structure of Inorganic Radicals (Elsevier, Amsterdam-New York, 1967)

    Google Scholar 

  39. J. Dugas, B. Bejjaji, D. Sayah, J.C. Trombe, J. Solid State Chem. 24, 143–151 (1978). (in French)

    Article  ADS  Google Scholar 

  40. V.V. Nosenko, I.P. Vorona, S.S. Ishchenko, N.P. Baran, I.V. Zatovsky, N.A. Gorodilova, V.Y. Povarchuk, Radiat. Meas. 47, 970–973 (2012)

    Article  Google Scholar 

  41. P.I. Canniere, R. Debuyst, F. Dejehet, D. Apers, Nucl. Tracks Radiat. Meas. 14, 267–273 (1998)

    Article  Google Scholar 

  42. T.M. Pietrzak, D.E. Wood, J. Chem. Phys. 53, 2454–2459 (1970)

    Article  ADS  Google Scholar 

  43. Morton JR, Preston JF(1977). In: Landolt-Börnstein—Group II Molecules and Radicals 9A. Fischer H, Hellwege KH (eds) (Springer, Berlin-Heidelberg, 1977) pp. 50–80

  44. Claridge RFC (2007). In: Landolt-Börnstein—Group II Molecules and Radicals Database New series II/26A1. Fischer H (ed) (Springer, Berlin-Heidelberg, 2007) pp. 44–47

  45. T. Murata, K. Shiraishi, Y. Ebina, T. Miki, Appl. Radiat. Isot. 47, 1527–1531 (1996)

    Article  Google Scholar 

  46. M. Gafurov, V. Denysenkov, M.J. Prandolini, T.F. Prisner, Appl. Magn. Reson. 43(1–2), 119–128 (2012)

    Article  Google Scholar 

  47. C.J. Pickard, F. Mauri, Phys. Rev. B 63, 245101 (2001)

    Article  ADS  Google Scholar 

  48. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  49. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, F. Mauri, N. Marzari, L. Martin-Samos, M. Lazzeri, J.P. Burrows, A. Kokalj, C. Gougoussis, U. Gerstmann, L. Paulatto, A. Pasquarello, S. Paolini, R. Mazzarello, C. Sbraccia, S. Scandolo, A.P. Seitsonen, A. Smogunov, R.M. Wentzcovitch, P. Umari, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  50. M. Yashima, Y. Yonehara, H. Fujimori, J. Phys. Chem. C 115, 25077–25087 (2011)

    Article  Google Scholar 

  51. D. Vanderbilt, Phys. Rev. B 41, 7892–7895 (1990)

    Article  ADS  Google Scholar 

  52. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993–2006 (1991)

    Article  ADS  Google Scholar 

  53. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  54. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012)

    Article  Google Scholar 

  55. E.S. Kovaleva, M.P. Shabanov, V.I. Putlyaev, V.D. Tretyakov, V.K. Ivanov, N.I. Silkin. Cent. Eur. J. Chem. 7, 168–174 (2009)

    Article  Google Scholar 

  56. T.H. de Keijser, J.L. Langford, E.J. Mittemeijer, A.B.P. Vogels, J. Appl. Cryst. 15, 308–314 (1982)

    Article  Google Scholar 

  57. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006)

    Article  ADS  Google Scholar 

  58. F.S. Axel, Biophys. Struct. Mechanism 2, 181–218 (1976)

    Article  Google Scholar 

  59. R. Gibson, W. Bonfield, J. Biomed. Mater. Res. 59, 697–708 (2002)

    Article  Google Scholar 

  60. R. Astala, M.J. Stott, Chem. Mater. 17, 4125–4133 (2005)

    Article  Google Scholar 

  61. D.V. Rokhmistrov, O.T. Nikolov, O.A. Gorobchenko, K.I. Loza, Appl. Radiat. Isot. 70, 2621–2626 (2012)

    Article  Google Scholar 

  62. D. Schramm, A. Rossi, Phys. Chem. Chem. Phys. 1, 2007–2012 (1999)

    Article  Google Scholar 

  63. M. Palard, E. Champion, S. Foucaud, J. Solid State Chem. 181, 1950–1960 (2008)

    Article  ADS  Google Scholar 

  64. J.F. Stanton, J. Chem. Phys. 126, 134309 (2007)

    Article  ADS  Google Scholar 

  65. M.J. Moorcroft, J. Davis, R.G. Compton, Talanta 54, 785–1020 (2001)

    Article  Google Scholar 

  66. M. Markovic, B.O. Fowler, M.S. Tung, J. Res. Natl. Inst. Stand. Technol. 109, 553–568 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities. M.G. and T.B. acknowledge the subsidy of the Russian Government to support the Program of competitive Growth of Kazan Federal University among World’s Leading Academic Centers. The measurements were done on the equipment of the Centre of the Shared Facilities of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timur Biktagirov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gafurov, M., Biktagirov, T., Mamin, G. et al. A DFT, X- and W-band EPR and ENDOR Study of Nitrogen-Centered Species in (Nano)Hydroxyapatite. Appl Magn Reson 45, 1189–1203 (2014). https://doi.org/10.1007/s00723-014-0572-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0572-0

Keywords

Navigation