Skip to main content
Log in

Petrological and tectono-magmatic significance of ophiolitic basalts from the Elba Island within the Alpine Corsica-Northern Apennine system

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Two distinct ophiolitic units, which represent remnants of the Jurassic Ligurian-Piedmont Ocean, crop out in the Elba Island. They are the Monte Strega unit in central-eastern Elba and the Punta Polveraia-Fetovaia unit in western Elba. Ophiolitic rocks from the Monte Strega unit are commonly affected by ocean floor metamorphism, whereas those from the Punta Polveraia-Fetovaia unit are affected to various extent by thermal metamorphism associated with the Late Miocene Monte Capanne monzogranitic intrusion. Both ophiolitic units include pillow lavas and dykes with compositions ranging from basalt to basaltic andesite, Fe-basalt, and Fe-basaltic andesite. Basaltic rocks from these distinct ophiolitic units show no chemical differences, apart those due to fractional crystallization processes. They display a clear tholeiitic nature with low Nb/Y ratios and relatively high TiO2, P2O5, Zr, and Y contents. They generally display flat N-MORB normalized high field strength element patterns, which are similar to those of N-MORB. Chondrite-normalized rare earth element patterns show light REE / middle REE (LREE/MREE) depletion and marked heavy (H-) REE fractionation with respect to MREE. This HREE/MREE depletion indicates a garnet signature of their mantle sources. Accordingly, they can be classified as garnet-influenced MORB (G-MORB), based on Th, Nb, Ce, Dy, and Yb systematics. We suggest that the Elba Island ophiolitic basalts were generated at a magma starved, slow-spreading mid-ocean ridge. REE, Th, and Nb partial melting modelling shows that the compositions of the relatively primitive Elba Island ophiolitic basalts are compatible with partial melting of a depleted MORB mantle (DMM) source bearing garnet-pyroxenite relics. Hygromagmatophile element ratios suggest that basalts from both ophiolitic units were originated from chemically very similar mantle sources. A comparison with basalts and metabasalts from Alpine Corsica and northern Apennine ophiolitic units shows that the composition of the inferred mantle source for the Elba Island basalts is similar to that of some Lower Schistes Lustrés metabasalts of Alpine Corsica ophiolites, and some basalts from the Internal Ligurian units of northern Apennine. In contrast, it slightly differs from those of other ophiolitic units of Alpine Corsica and northern Apennine. The chemical differences observed between basalts and metabasalts from different Ligurian-Piedmont ophiolitic units were likely associated with different partial melting degrees of either DMM source or garnet-pyroxenite relics and/or different mixing proportions of melts derived from them, as well as to different compositions of garnet-pyroxenite relics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbate E, Bortolotti V, Principi G (1980) Apennines ophiolites: a peculiar oceanic crust. Ofioliti 1:59–96

    Google Scholar 

  • Abbate E, Bortolotti V, Conti M, Marcucci M, Principi G, Passerini P, Treves B (1986) Apennines and Alps ophiolites and evolution of the Western Tethys. Mem Soc Geol Ital 31:23–44

    Google Scholar 

  • Allègre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25

    Article  Google Scholar 

  • Beccaluva L, Ohnenstetter D, Ohnenstetter M, Venturelli G (1977) The trace element geochemistry of Corsican ophiolites. Contrib Mineral Petrol 64:11–31

    Article  Google Scholar 

  • Bernoulli D, Manatschal G, Desmurs L, Muntener O (2003) Where did Gustav Steinmann see the trinity? Back to the roots of an Alpine ophiolite concept. Geol Soc Am Spec Pap 373:93–110

    Google Scholar 

  • Bertotti G, Picotti V, Bernoulli D, Castellarin A (1993) From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the early cretaceous. Sediment Geol 86:53–76

    Article  Google Scholar 

  • Bill M, Nügler TF, Masson H (2000) Major, minor, trace, Sm-Nd and Sr isotope compositions of mafic rocks from the earliest oceanic crust of the Alpine Tethys. Schweiz Mineral Petrogr Mitt 80:131–145

    Google Scholar 

  • Boccaletti M, Coli M, Eva C, Ferrari G, Giglia G, Lazzarotto A, Merlanti F, Nicolich R, Papani G, Postpischl D (1985) Considerations on the seismo-tectonics of the Northern Apennines. Tectonophysics 117:7–38

    Article  Google Scholar 

  • Bortolotti V, Principi G (2005) Tethyan ophiolites and Pangea break-up. Island Arc 14:442–470

    Article  Google Scholar 

  • Bortolotti V, Gardin S, Marcucci M, Principi G (1994) The Nisportino Formation: a transitional unit between the Monte Alpe cherts and the Calpionella Limestone (Vara Supergroup, Elba Island, Italy). Ofioliti 19:349–365

    Google Scholar 

  • Bortolotti V, Pandeli E, Principi G (2001) The geology of Elba Island: an historical introduction. Ofioliti 26:79–96

    Google Scholar 

  • Bortolotti V, Pandeli E, Principi G, D’Orefice M, Graciotti R (2015) Geological map of Elba Island (1:25.000), with notes. D.R.E.AM. Italia

  • Bouillin JP (1983) Exemples de déformations locales liées à la mise en place de granitoïdes alpins dans des conditions distensives: l’Ile d’Elbe (Italie) et le Cap Bougaroun (Algérie). Rev Géol Dynam Géog Phys 24:101–116

    Google Scholar 

  • Bouillin JP, Poupeau G, Sabil N (1994) Etude thermo-chronologique de la dénudation du pluton du Monte Capanne (Ile d’Elbe, Italie) per les traces de fission. Bull Soc Géol Fr 165:19–25

    Google Scholar 

  • Channel JET, Mareshal J (1989) Delamination and asymmetric lithospheric thickening in the development of the Tyrrhenian rift. Geol Soc Lond Spec Publ 30:285–302

    Article  Google Scholar 

  • Coli M, Conticelli S, Pandeli E, Moratti G, Papini P, Tommasini S (2001) 2-Elba Island C-Western Elba, The Ophiolitic unit of Fetovaia-Pomonte and Punta Nera zone, Western Monte Capanne thermo-metamorphic aureola. Ofioliti 26:347–356

    Google Scholar 

  • Collettini C, De Paola N, Holdsworth RE, Barchi MR (2006) The development and behaviour of low-angle normal faults during Cenozoic asymmetric extension in the Nothern Apennines, Italy. J Struct Geol 28:333–352

    Article  Google Scholar 

  • Cortesogno L, Gaggero L (1992) The basaltic dikes in the Bracco gabbroic massif: petrology of the earliest phases of basaltic activity in the northern Apennines ophiolites. Ofioliti 17(183):198

    Google Scholar 

  • Cortesogno L, Galbiati B, Principi G (1987) Note alla “carta geologica delle ofioliti del Bracco” e ricostruzione della paleogeografia Giurassico-Cretacica. Ofioliti 12:261–342

    Google Scholar 

  • Daniel JM, Jolivet L (1995) Detachment faults and pluton emplacement: Elba Island (Tyrrhenian Sea). Bull Soc Géol Fr 166:341–354

    Google Scholar 

  • Desmurs L, Muntener O, Manatschal G (2002) Onset of magmatic accretion within a magma-poor rifted margin: a case study from the Platta ocean continent transition, eastern Switzerland. Contrib Mineral Petrol 144:365–382. doi:10.1007/s00410-002-0403-4

    Article  Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123:387–411. doi:10.1130/B30446.1

    Article  Google Scholar 

  • Durand-Delga M (1984) Principaux traits de la Corse alpine et corrélations avec les Alpes ligures. Mem Soc Geol Ital 28:285–329

    Google Scholar 

  • Durand-Delga M, Peybernès B, Rossi P (1997) Arguments en faveur de la position, au Jurassique, des ophiolites de la Balagne (Haute Corse, France) au voisinage de la marge continentale européenne. CR Acad Sci Paris 325:973–981

    Google Scholar 

  • Elter P (1972) La zona ofiolitifera del Bracco nel quadro dell’Appennino Settentrionale. Introduzione alla geologia delle Liguridi. 66° Congr Soc Geol It, Guida alle escursioni, Pacini, Pisa, p. 5–35

  • Elter P (1975) L’ensemble ligure. Bull Soc Géol Fr 17:984–997

    Article  Google Scholar 

  • Froitzheim N, Manatschal G (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Geol Soc Am Bull 108:1120–1133

    Article  Google Scholar 

  • Fujimaki H, Tatsumoto M, Aoki K-i (1984) Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. J Geophys Res 89:662–672

    Article  Google Scholar 

  • Govindaraju K (1994) Compilation of working values and sample description for 383 geostandards. Geostand Newslett 18:1–158

    Article  Google Scholar 

  • Green T, Blundy J, Adam J, Yaxley G (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. Lithos 53:165–187. doi:10.1016/S0024-4937(00)00023-2

    Article  Google Scholar 

  • Jolivet L, Daniel JM, Fournier M (1991) Geometry and kinematics of extension in Alpine Corsica. Earth Planet Sci Lett 104:278–291

    Article  Google Scholar 

  • Keller JVA, Pialli G (1990) Tectonics of the Island of Elba: a reappraisal. Boll Soc Geol Ital 109:413–425

    Google Scholar 

  • Lachance GR, Trail RJ (1966) Practical solution to the matrix problem in X-ray analysis. Can Spectrosc 11:43–48

    Google Scholar 

  • Lemoine M, Trumpy R (1987) Pre-oceanic rifting in the Alps. Tectonophysics 133:305–320

    Article  Google Scholar 

  • Liu Y, Gao S, Lee C-TA, Hu S, Liu X, Yuan H (2005) Melt-peridotite interactions: links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett 234:39–57

    Article  Google Scholar 

  • Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5:227–245

    Article  Google Scholar 

  • Marroni M, Pandolfi L (2007) The architecture of the Jurassic Ligure-Piemontese oceanic basin: tentative reconstruction along the Northern Apennine - Alpine Corsica transect. Int J Earth Sci 96:1059–1078

    Article  Google Scholar 

  • Marroni M, Molli G, Montanini A, Tribuzio R (1998) The association of continental crust rocks with ophiolites in the Northern Apennines (Italy): implications for the continent-ocean transition in the Western Tethys. Tectonophysics 292:43–66

    Article  Google Scholar 

  • Marroni M, Molli G, Montanini A, Ottria G, Pandolfi L, Tribuzio R (2002) The external Ligurian units (Northern Apennine, Italy): from rifting to convergence of a fossil ocean-continent transition zone. Ofioliti 27:119–131

    Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Article  Google Scholar 

  • Menna F, Principi G, Treves B, Podetti S, Garfagnoli F, Corti S (2007) The pre-orogenic tectonic history of the Bracco gabbroic massif: review and news. Per Miner 76:81–100. doi:10.2451/2007PM0010

    Google Scholar 

  • Montanini A, Tribuzio R, Anczkiewicz R (2006) Exhumation history of a garnet pyroxenite-bearing mantle section from a continent–ocean transition (Northern Apennine ophiolites, Italy). J Petrol 47:1943–1971

    Article  Google Scholar 

  • Montanini A, Tribuzio R, Vernia L (2008) Petrogenesis of basalts and gabbros from an ancient continent–ocean transition (External Liguride ophiolites, Northern Italy). Lithos 101:453–479. doi:10.1016/j.lithos.2007.09.007

    Article  Google Scholar 

  • Nirta G, Pandeli E, Principi G, Bertini G, Cipriani N (2005) The Ligurian units of Southern Tuscany. Boll Soc Geol It Spec Pap 3:29–54

  • Ohnenstetter D, Ohnenstetter M, Rocci G (1976) Étude des métamorphismes successifs des cumulats ophiolitiques de Corse. Bull Soc Géol Fr 7(XVIII 1):115–134

    Article  Google Scholar 

  • Ohnenstetter M, Ohnenstetter D, Vidal P, Cornichet J, Hermitte D, Mace J (1981) Crystallization and age of zircon from Corsican ophiolitic albitites: consequences for oceanic expansion in Jurassic time. Earth Planet Sci Lett 54:397–408

    Article  Google Scholar 

  • Orti L, Morelli M, Pandeli E, Principi G (2002) New geological data from Gorgona Island (Northern Tyrrhenian Sea). Ofioliti 27:133–144

    Google Scholar 

  • Padoa E, Saccani E, Durand-Delga M (2001) Structural and geochemical data on the Rio Magno Unit: evidences of a new “Apenninic” ophiolitic unit in alpine Corsica and its geodynamic implications. Terra Nov. 13:135–142

  • Padoa E, Saccani E, Durand-Delga M (2002) The Rio Magno Unit (Alpine Corsica): a review of its structural, stratigraphical and geochemical features and their geodynamic implications. Ofioliti 27:31–42

    Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, New York, pp 525–548

    Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Article  Google Scholar 

  • Perrin M (1975) L’ile d’Elbe et la limite Alpes-Apennin: données sur la structure géologique et l’ évolution tectogenétique de l’Elbe alpine et de l’Elbe apennine. Boll Soc Geol Ital 94:1929–1955

    Google Scholar 

  • Pertusati PC, Raggi G, Ricci CA, Duranti S, Palmeri R (1993) Evoluzione post-collisionale dell’ Elba centro-orientale. Mem Soc Geol Ital 49:223–312

    Google Scholar 

  • Piccardo GB (2008) The Jurassic Ligurian Tethys, a fossil ultraslow spreading ocean: the mantle perspective. Geol Soc Lond Spec Publ 293:11–34

    Article  Google Scholar 

  • Principi G, Treves B (1984) Il sistema Corso-Appenninico come prisma di accrezione. Riflessi sul problema generale del limite Alpi-Appennini. Mem Soc Geol Ital 28:549–576

    Google Scholar 

  • Principi G, Bortolotti V, Chiari M, Cortesogno L, Gaggero L, Marcucci M, Saccani E, Treves B (2004) The Pre-orogenic volcano-sedimentary covers of the western Tethys oceanic basin: a review. Ofioliti 29:177–211

    Google Scholar 

  • Principi G, Bortolotti V, Pandeli E, Fanucci F, Fazzuoli M, Babbini A, Corti S, Dini A, Garfagnoli F, Menna F, Morelli M, Nirta G, Chiari M, Reale S, D’Orefice M, Graciotti R (2015) ISPRA-Servizio Geologico d’Italia, Carta Geologica 1:50.000 n. 328, Isola d’Elba, www.ispraambiente.gov.it/media/carg/328_ISOLAD’ELBA/foglio.html, D.R.E.AM. Italia

  • Rampone E, Hofmann AW (2012) A global overview of isotopic heterogeneities in the oceanic mantle. Lithos 148:247–261. doi:10.1016/j.lithos.2012.06.018

    Article  Google Scholar 

  • Rampone E, Hofmann AW, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1995) Petrology, mineral and isotope geochemistry of the External Liguride peridotites (Northern Apennines, Italy). J Petrol 36:81–105

    Article  Google Scholar 

  • Rampone E, Hofmann AW, Raczek I (1998) Isotopic constraints within the Internal Liguride ophiolites (N. Italy): The lack of a genetic mantle-crust link. Earth Planet Sci Lett 163:175–189

    Article  Google Scholar 

  • Rampone E, Romairone A, Abouchami W, Piccardo GB, Hofmann AW (2005) Chronology, petrology, and isotope geochemistry of the Erro-Tobbio peridotites (Ligurian Alps, Italy): records of late Palaeozoic lithospheric extension. J Petrol 46:799–827. doi:10.1093/petrology/egi001

    Article  Google Scholar 

  • Rossi P, Cocherie A, Lahondère D, Fanning CM (2002) La marge européenne de la Téthys jurassique en Corse: datation de trondhjémites de Balagne et indices de croûte continentale sous le domaine Balano-Ligure. CR Acad Sci Paris 334:313–322

    Google Scholar 

  • Saccani E (2015) A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geosci Front 6:481–501. doi:10.1016/j.gsf.2014.03.006

    Article  Google Scholar 

  • Saccani E, Padoa E, Tassinari R (2000) Preliminary data on the Pineto gabbroic Massif and Nebbio basalts: progress toward the geochemical characterization of Alpine Corsica ophiolites. Ofioliti 25:75–85

    Google Scholar 

  • Saccani E, Principi G, Garfagnoli F, Menna F (2008) Corsica ophiolites: geochemistry and petrogenesis of basaltic and metabasaltic rocks. Ofioliti 33:187–207

    Google Scholar 

  • Saccani E, Allahyari K, Beccaluva L, Bianchini G (2013) Geochemistry and petrology of the Kermanshah ophiolites (Iran): implication for the interaction between passive rifting, oceanic accretion, and plume-components in the Southern Neo-Tethys Ocean. Gondwana Res 24:392–411. doi:10.1016/j.gr.2012.10.009

    Article  Google Scholar 

  • Saccani E, Dilek Y, Marroni M, Pandolfi L (2015) Continental margin ophiolites of Neotethys: remnants of ancient ocean-continent transition zone (OCTZ) lithosphere and their geochemistry, mantle sources and melt evolution patterns. Episodes 8:230–249. doi:10.18814/epiiugs/2015/v38i4/82418

    Google Scholar 

  • Spohn A (1981) Die ophiolitführenden Gesteine von West-Elba: Stratigraphie, Tektonik, Metamorphose. Berl Geowiss Abh Reihe A37:1–124

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic-systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Tartarotti P, Vaggelli G (1994) Mantle peridotites and cumulates from the Elba Island ophiolites: fragments of the oceanic mantle-crust transition zone. Ofioliti 19:319–325

    Google Scholar 

  • Thirlwall M, Upton BGJ, Jenkins C (1994) Interaction between continental lithosphere and the Iceland plume – Sr-Nd-Pb isotope geochemistry of tertiary basalts. NE Greenl J Petrol 35(839):879

    Google Scholar 

  • Vannucci R, Rampone E, Piccardo GB, Ottolini L, Bottazzi P (1993) Ophiolitic magmatism in the Ligurian Tethys: an ion microprobe study of basaltic clinopyroxenes. Contrib Mineral Petrol 115:123–137

    Article  Google Scholar 

  • Venturelli G, Capedri S, Thorpe RS, Potts PJ (1979) Rare-earth and other trace element distribution in some ophiolitic metabasalts of Corsica. Chem Geol 24:339–353

    Article  Google Scholar 

  • Venturelli G, Thorpe RS, Potts PJ (1981) Rare earth and trace element characteristics of ophiolitic metabasalts from the Alpine-Apennine belt. Earth Planet Sci Lett 53:109–123

    Article  Google Scholar 

  • Westerman DS, Dini A, Innocenti F, Rocchi S (2004) Rise and fall of a nested Christmas-tree laccolith complex, Elba Island, Italy. Geol Soc Lond Spec Publ 234:195–213

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

Download references

Acknowledgments

The Italian Ministry of Education, University and Research (MIUR) is acknowledged for the financial support. Special thanks go to Renzo Tassinari and Mirella Bonora (Ferrara University) for her support with analytical techniques. M. Marroni, M. Ohnenstetter, and an anonymous reviewer are sincerely acknowledged for their constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Saccani.

Additional information

Editorial handling: A. P. Santo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saccani, E., Principi, G. Petrological and tectono-magmatic significance of ophiolitic basalts from the Elba Island within the Alpine Corsica-Northern Apennine system. Miner Petrol 110, 713–730 (2016). https://doi.org/10.1007/s00710-016-0445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-016-0445-3

Keywords

Navigation