Skip to main content
Log in

Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Thermocapillary migration of a planar non-deformable droplet in flow fields with two uniform temperature gradients at moderate and large Marangoni numbers is studied numerically by using the front-tracking method. It is observed that the thermocapillary motion of planar droplets in the uniform temperature gradients is steady at moderate Marangoni numbers, but unsteady at large Marangoni numbers. The instantaneous migration velocity at a fixed migration distance decreases with increasing Marangoni numbers. The simulation results of the thermocapillary droplet migration at large Marangoni numbers are found in qualitative agreement with those of experimental investigations. Moreover, the results concerned with steady and unsteady migration processes are further confirmed by comparing the variations of temperature fields inside and outside the droplet. It is evident that at large Marangoni numbers the weak transport of thermal energy from outside of the droplet into inside cannot satisfy the condition of a steady migration process, which implies that the advection around the droplet is a more significant mechanism for heat transfer across/around the droplet at large Ma numbers. Furthermore, from the condition of overall steady-state energy balance in the flow domain, the thermal flux across its surface is studied for a steady thermocapillary droplet migration in a flow field with uniform temperature gradient. By using the asymptotic expansion method, a non-conservative integral thermal flux across the surface is identified in the steady thermocapillary droplet migration at large Marangoni numbers. This non-conservative flux may well result from the invalid assumption of a quasi-steady state, which indicates that the thermocapillary droplet migration at large Marangoni numbers cannot reach a steady state and is thus an unsteady process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leal L.G.: Laminar Flow and Convective Transport Processes. Butterworth-Heinemann, Boston (1992)

    Google Scholar 

  2. Young N.O., Goldstein J.S., Block M.J.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350 (1959)

    Article  MATH  Google Scholar 

  3. Subramanian R.S.: Slow migration of a gas bubble in a thermal gradient. AIChE J. 27, 646 (1981)

    Article  Google Scholar 

  4. Crespo, A., Jimenez-Fernandez, J.: In: Rath, H.J. (ed.) Microgravity Fluid Mechanics, p. 405, Springer, Berlin (1992)

  5. Balasubramaniam R., Subramanian R.S.: Thermocapillary bubble migration- thermal boundary layers for large Marangoni numbers. Int. J. Multiph. Flow 22, 593 (1996)

    Article  MATH  Google Scholar 

  6. Crespo A., Migoya E., Manuel F.: Thermocapillary migration of bubbles at large Reynolds numbers. Int. J. Multiph. Flow 24, 685 (1998)

    Article  MATH  Google Scholar 

  7. Szymczyk J., Siekmann J.: Numerical calculation of the thermocapillary motion of a bubble under microgravity. Chem. Eng. Common. 69, 129 (1988)

    Article  Google Scholar 

  8. Balasubramaniam R., Lavery J.E.: Numerical simulation of thermocapillary bubble migration under microgravity for large Reynolds and Marangoni numbers. Numer. Heat Transf. A 16, 175 (1989)

    Article  Google Scholar 

  9. Ehmann M., Wozniak G., Siekmann J.: Numerical analysis of the thermocapillary migration of a fluid particle under zero-gravity. ZAMM Z. Angew. Math. Mech. 72, 347 (1992)

    Article  MATH  Google Scholar 

  10. Treuner M., Galindo V., Gerbeth G., Langbein D., Rath H.J.: Thermocapillary bubble migration at high Reynolds and Marangoni numbers under low gravity. J. Colloid Interface Sci. 179, 114 (1996)

    Article  Google Scholar 

  11. Hadland P.H., Balasubramaniam R., Wozniak G.: Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity. Exp. Fluid 26, 240 (1999)

    Article  Google Scholar 

  12. Unverdi S.O., Tryggvason G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25 (1992)

    Article  MATH  Google Scholar 

  13. Tryggvason G. et al.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708 (2001)

    Article  MATH  Google Scholar 

  14. Sussman M., Smereka P., Osher S.: A level set approach for computing solutions to incompressible two-phase flows. J. Comput. Phys. 114, 146 (1994)

    Article  MATH  Google Scholar 

  15. Nas S., Tryggvason G.: Thermocapillary interaction of two bubbles or drops. Int. J. Multiph. Flow 29, 1117 (2003)

    Article  MATH  Google Scholar 

  16. Nas S., Muradoglu M., Tryggvason G.: Pattern formation of drops in thermocapillary migration. Int. J. Heat Transf. 49, 2265 (2006)

    Article  MATH  Google Scholar 

  17. Haj-Hariri H., Shi Q., Borhan A.: Thermocapillary motion of deformable drops at finite Renoylds and Marangoni numbers. Phys. Fluids 9, 845 (1997)

    Article  Google Scholar 

  18. Herrmann, M., Lopez, J.M., Brady, P., Raessi, M.: Thermocapillary motion of deformable drops and bubbles. Proceedings of the Summer Program 2008, Center for Turbulence Research, 155 (2008)

  19. Wang J., Lu P., Wang Z., Yang C., Mao Z.-S.: Numerical simulation of unsteady mass transfer by the level set method. Chem. Eng. Sci. 63, 314 (2008)

    Google Scholar 

  20. Wegener M., Eppinger T., Bäumler K., Kraume M., Paschedag A.R., B̈ansch E.: Transient rise velocity and mass transfer of a single drop with interfacial instability-Numerical investigations. Chem. Eng. Sci 64, 4835 (2009)

    Article  Google Scholar 

  21. Zhang J., Eckmann D.M., Ayyaswamy P.S.: A front-tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport. J. Comput. Phys. 214, 366 (2006)

    Article  MATH  Google Scholar 

  22. Muradoglu M., Tryggvason G.: A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227, 2238 (2008)

    Article  MATH  Google Scholar 

  23. Braun B., Ikier C., Klein H.: Thermocapillary migration of droplets in a binary mixture with miscibility gap during liquid/liquid phase separation under reduced gravity. J. Colloid Interface Sci. 159, 515 (1993)

    Article  Google Scholar 

  24. Balasubramaniam R., Chai A.-T.: Thermocapillary migration of droplets: an exact solution for small Marangoni numbers. J. Colloid Interface Sci. 119, 531 (1987)

    Article  Google Scholar 

  25. Wang Y., Lu X., Zhang L., Tang Z., Hu W.: Numerical simulation of drop Marangoni migration under microgravity. Acta Astronautica 54, 325 (2004)

    Article  Google Scholar 

  26. Balasubramaniam R., Subramanian R.S.: The migration of a drop in a uniform temperature gradient at large Marangoni numbers. Phys. Fluids 12, 733 (2000)

    Article  MATH  Google Scholar 

  27. Ma X., Balasubramiam R., Subramanian R.S.: Numerical simulation of thermocapillary drop motion with internal circulation. Numer. Heat Transf. A 35, 291 (1999)

    Article  Google Scholar 

  28. Xie J.C., Lin H., Zhang P., Liu F., Hu W.R.: Experimental investigation on thermocapillary drop migration at large Marangoni number in reduced gravity. J. Colloid Interface Sci. 285, 737 (2005)

    Article  Google Scholar 

  29. Gao P., Yin Z., Hu W.: Thermocapillary motion of droplets at large Marangoni numbers. Adv. Space Res. 41, 2101 (2008)

    Article  Google Scholar 

  30. Gao P., Yin Z.H., Hu W.R.: Numerical investigation of thermocapillary migration of the drop for large Marangoni numbers. Sci. China E 50, 694 (2007)

    Article  Google Scholar 

  31. Bassano E.: Numerical simulation of thermo-solutal-capillary migration of a dissolving drop in a cavity. Int. J. Numer. Mech. Fluids 41, 765 (2003)

    Article  MATH  Google Scholar 

  32. Zhang J., Miksis M.J., Bankoff S.G.: Nonlinear dynamics of a two-dimensional viscous drop under shear flow. Phys. Fluids 18, 072106 (2006)

    Article  Google Scholar 

  33. Delale C.F., Tryggvason G., Nas S.: Cylindrical bubble dynamics: Exact and direct numerical simulation results. Phys. Fluids 20, 040903 (2008)

    Article  Google Scholar 

  34. Peskin C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  35. Someya S., Munakata T.: Measurement of the interface tension of immiscible liquids interface. J. Cryst. Growth 275, c343 (2005)

    Article  Google Scholar 

  36. Milne-Thomson L.M.: Theoretical Hydrodynamics. The Macmillan Press, London (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo-Bing Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, ZB., Hu, WR. Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers. Acta Mech 223, 609–626 (2012). https://doi.org/10.1007/s00707-011-0587-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0587-7

Keywords

Navigation