Skip to main content
Log in

Sweet pepper confirmed as a reservoir host for tomato yellow leaf curl virus by both agro-inoculation and whitefly-mediated inoculation

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, has a single-stranded DNA genome. TYLCV can induce severe disease symptoms on tomato plants, but other hosts plants such as cucurbits and peppers are asymptomatic. A full-length DNA clone of a Korean TYLCV isolate was constructed by rolling-circle amplification from TYLCV-infected tomatoes in Korea. To assess relative susceptibility of sweet pepper varieties to TYLCV, 19 cultivars were inoculated with cloned TYLCV by agro-inoculation. All TYLCV-infected sweet peppers were asymptomatic, even though Southern hybridization and polymerase chain reaction analysis showed TYLCV genomic DNA accumulation in roots, stems, and newly produced shoots. Southern hybridization indicated that TYLCV replicated and moved systemically from agro-inoculated apical shoot tips to roots or newly produced shoots of sweet peppers. Whitefly-mediated inoculation experiments showed that TYLCV can be transmitted to tomatoes from TYLCV-infected sweet peppers. Taken together, these results indicate that sweet pepper can be a reservoir for TYLCV in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Czosnek H, Laterrot H (1997) A worldwide survey of tomato yellow leaf curl viruses. Arch Virol 142(7):1391–1406

    Article  CAS  PubMed  Google Scholar 

  2. Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research 71(1):123–134

    Article  CAS  PubMed  Google Scholar 

  3. Rochester DE, DePaulo JJ, Fauquet CM, Beachy RN (1994) Complete nucleotide sequence of the geminivirus tomato yellow leaf curl virus, Thailand isolate. J General Virol 75(3):477–485

    Article  CAS  Google Scholar 

  4. Kheyr-Pour A, Bendahmane M, Matzeit V, Accotto GP, Crespi S, Gronenborn B (1991) Tomato yellow leaf curl virus from sardinia is a whitefly-transmitted monoparatite geminivirus. Nucleic Acids Research 19(24):6763–6769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H (1991) Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185(1):151–161

    Article  CAS  PubMed  Google Scholar 

  6. Lee H, Song W, Kwak H-R, J-d Kim, Park J, Auh C-K, Kim D-H, K-y Lee, Lee S, Choi H-S (2010) Phylogenetic analysis and inflow route of Tomato yellow leaf curl virus (TYLCV) and Bemisia tabaci in Korea. Mol Cells 30(5):467–476

    Article  CAS  PubMed  Google Scholar 

  7. Lee HJ, Auh CK, Kim CS, Soh HC, Lee SC (2011) Research notes: molecular evidence of recombination on Korean isolates of tomato yellow leaf curl virus by nucleotide transversions and transitions. Plant Pathol J 27(4):378–384

    Article  CAS  Google Scholar 

  8. Pusag JCA, Hemayet Jahan S, Lee K-S, Lee S, Lee K-Y (2012) Upregulation of temperature susceptibility in Bemisia tabaci upon acquisition of Tomato yellow leaf curl virus (TYLCV). J Insect Physiol 58(10):1343–1348

    Article  CAS  PubMed  Google Scholar 

  9. Cohen J, Gera A, Ecker R, Ben Joseph R, Perlsman M, Gokkes M, Lachman O, Antignus Y (1995) Lisianthus leaf curl a new disease of lisianthus caused by tomato yellow leaf curl virus. Plant Dis 79(4):416–420

    Article  CAS  Google Scholar 

  10. Navas-Castillo J, Sánchez-Campos S, Díaz JA, Sáez-Alonso E, Moriones E (1999) Tomato yellow leaf curl virus-Is causes a novel disease of common bean and severe epidemics in tomato in Spain. Plant Dis 83(1):29–32

    Article  Google Scholar 

  11. Reina J, Morilla G, Bejarano E, Rodríguez M, Janssen D (1999) First report of Capsicum annuum plants infected by tomato yellow leaf curl virus. Plant Dis 83(12):1176

    Article  Google Scholar 

  12. Anfoka G, Haj Ahmad F, Abhary M, Hussein A (2009) Detection and molecular characterization of viruses associated with tomato yellow leaf curl disease in cucurbit crops in Jordan. Plant Pathol 58(4):754–762

    Article  CAS  Google Scholar 

  13. Schuster DJ (2004) Squash as a trap crop to protect tomato from whitefly-vectored tomato yellow leaf curl. Int J Pest Manag 50(4):281–284

    Article  Google Scholar 

  14. Cohen S, Nitzany F (1966) Transmission and host range of the tomato yellow leaf curl virus. Phytopathology 56(10):1127–1131

    Google Scholar 

  15. Cohen S, Antignus Y (1994) Tomato yellow leaf curl virus, a whitefly-borne geminivirus of tomatoes. In: Advances in disease vector research. Springer, New York, pp 259–288

  16. Polston J, Cohen L, Sherwood T, Ben-Joseph R, Lapidot M (2006) Capsicum species: symptomless hosts and reservoirs of Tomato yellow leaf curl virus. Phytopathology 96(5):447–452

    Article  CAS  PubMed  Google Scholar 

  17. Morilla G, Janssen D, García-Andrés S, Moriones E, Cuadrado I, Bejarano E (2005) Pepper (Capsicum annuum) is a dead-end host for Tomato yellow leaf curl virus. Phytopathology 95(9):1089–1097

    Article  CAS  PubMed  Google Scholar 

  18. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1(4):19–21

    Article  CAS  Google Scholar 

  19. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22):4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lee G, Kim S, Jung J, Auh C-K, Choi E, Chang M, Lee S (2011) Agroinoculation of Nicotiana benthamiana with cloned honeysuckle yellow vein virus isolated from Lonicera japonica. Arch Virol 156(5):785–791

    Article  CAS  PubMed  Google Scholar 

  22. Klinkenberg FA, Ellwood S, Stanley J (1989) Fate of African cassava mosaic virus coat protein deletion mutants after agroinoculation. J General Virol 70(7):1837–1844

    Article  CAS  Google Scholar 

  23. Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8(10):1669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344(1):169–184

    Article  CAS  PubMed  Google Scholar 

  25. Roye M, Wernecke M, McLaughlin W, Nakhla M, Maxwell D (1999) Tomato dwarf leaf curl virus, a new bipartite geminivirus associated with tomatoes and peppers in Jamaica and mixed infection with tomato yellow leaf curl virus. Plant Pathol 48(3):370–378

    Article  Google Scholar 

  26. Quiñones M, Fonseca D, Martinez Y, Accotto G (2002) First report of tomato yellow leaf curl virus infecting pepper plants in Cuba. Plant Dis 86(1):73

    Article  Google Scholar 

  27. Salati R, Nahkla MK, Rojas MR, Guzman P, Jaquez J, Maxwell DP, Gilbertson RL (2002) Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies, and identification of reservoir hosts. Phytopathology 92(5):487–496

    Article  PubMed  Google Scholar 

  28. Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Kontsedalov S, Skaljac M, Brumin M, Sobol I, Czosnek H, Vavre F, Fleury F (2010) The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J Virol 84(18):9310–9317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Park J, Jahan S, Song W-G, Lee H, Lee Y-S, Choi H-S, Lee K-S, Kim C-S, Lee S, Lee K-Y (2012) Identification of biotypes and secondary endosymbionts of Bemisia tabaci in Korea and relationships with the occurrence of TYLCV disease. J Asia Pac Entomol 15(1):186–191

    Article  CAS  Google Scholar 

  30. Ioannou N, Kyriakou A, Hadjinicolis A, Institouto Geōrgikōn Ereunōn (Cyprus) (1987) Host range and natural reservoirs of tomato yellow leaf curl virus. In: Technical bulletin, vol 85. Agricultural Research Institute, Ministry of Agriculture and Natural Resources, pp 1-8

  31. Bedford I, Kelly A, Banks G, Briddon R, Cenis J, Markham P (1998) Solanum nigrum: an indigenous weed reservoir for a tomato yellow leaf curl geminivirus in southern Spain. Eur J Plant Pathol 104(2):221–222

    Article  Google Scholar 

  32. Kashina BD, Mabagala RB, Mpunami AA (2002) Reservoir weed hosts of tomato yellow leaf curl begomovirus from Tanzania. Arch Phytopathol Plant Prot 35(4):269–278

    Article  CAS  Google Scholar 

  33. Fanigliulo A, Pacella R, Comes S, Crescenzi A (2007) Three years survey of Tomato yellow leaf curl Sardinia virus reservoir weed hosts in southern Italy. Commun Agric Appl Biol Sci 72(4):1023

    PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by a grant from the iPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries: No. 311058-05-1-HD140), Ministry for Agriculture, Food, and Rural Affairs, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Kwang Kim or Sukchan Lee.

Additional information

E.-J. Kil and H.-S. Byun contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2014_2072_MOESM1_ESM.pptx

Phylogenetic tree based on the full-length genome sequence of TYLCV isolates. This tree was generated by the neighbor-joining method using MEGA5 software. Tree branches were bootstrapped with 2000 replications (PPTX 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kil, EJ., Byun, HS., Kim, S. et al. Sweet pepper confirmed as a reservoir host for tomato yellow leaf curl virus by both agro-inoculation and whitefly-mediated inoculation. Arch Virol 159, 2387–2395 (2014). https://doi.org/10.1007/s00705-014-2072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2072-9

Keywords

Navigation