Skip to main content

Advertisement

Log in

The emergence of animal models of chronic pain and logistical and methodological issues concerning their use

  • Neurology and Preclinical Neurological Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

This paper examines the development of and some logistical and methodological issues surrounding the use of animal models of chronic pain. The first section addresses the emergent move towards mechanism-based and disease-related animal models of chronic pain that has accelerated since the late 1980s following publication of Bennett and Xie’s (Pain 33:87–107, 1998) paper on chronic constriction injury of the sciatic nerve and Stein et al.’s (Pharmacol Biochem Behav 31:445–451, 1988) paper on unilateral hind paw inflammation with complete Freund’s adjuvant. The discussion covers vast areas of chronic pain models developed over the past 50 years, starting with the numerous neuropathic, inflammatory and central pain models, as well as the growing number of models developed to study various forms of chronic pain from chronic back pain to visceral pain. It also examines the advantages and disadvantages of tonic pain models, mechanism-based and disease-related models of chronic pain, including issues related to the novel discovery of injury- or disease-related pathophysiological processes, the expansion of testing repertoires, and the successes and failures in the translation of analgesic development from animal preclinical models to human chronic pain conditions. The second section addresses experimental design considerations in the implementation of one of the 3Rs for the use of animal models of chronic pain; that is methods employed to reduce the number of animals used. The discussion covers various issues including the advantages and disadvantages of repeated dose designs and within-group drug testing, including incremental dosing schedules, and crossover designs. It also examines concerns surrounding the stability of symptoms and measures, including varying durations of multiple symptoms and the potential development of nociceptive sensitization, as well as possible use-dependent alterations in drug sensitivity and time-dependent changes in pain processes in specific animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott FA, Ocvirk ROK, Najafee R, Franklin KBJ (1999) Improving the efficiency of the formalin test. Pain 83:561–569

    CAS  PubMed  Google Scholar 

  • Adam B, Liebregts T, Gschossmann JM, Krippner C, Scholl F, Ruwe M, Holtmann G (2006) Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain 123:179–186

    PubMed  Google Scholar 

  • Andrews NA, Latrémolière A, Basbaum AI et al (2016) Ensuring transparency and minimization of methodologic bias in preclinical pain research: PPRECISE considerations. Pain 157:901–909

    PubMed  Google Scholar 

  • Antunes-Martins A, Perkins JR, Lees J, Hildebrandt T, Orengo C, Bennett DL (2013) Systems biology approaches to finding novel pain mediators. Wiley Interdiscip Rev Syst Biol Med 5:11–35

    CAS  PubMed  Google Scholar 

  • Balcombe J, Ferdowsian H, Briese L (2017) Prolonged pain research in mice: trends in reference to the 3Rs. J Appl Anim Welfare Sci 16:77–95

    Google Scholar 

  • Baron R, Levine JD, Fields HL (1999) Causalgia and reflex sympathetic dystrophy: does the sympathetic nervous system contribute to the generation of pain? Muscle Nerve 22:678–695

    CAS  PubMed  Google Scholar 

  • Barrett JE (2015) The pain of pain: challenges of animal behavior models. Eur J Pharmacol 753:183–190

    CAS  PubMed  Google Scholar 

  • Barrot M (2012) Tests and models of nociception and pain in rodents. Neuroscience 211:39–50

    CAS  PubMed  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    CAS  PubMed  Google Scholar 

  • Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD (2019) The role of voltage-gated sodium channels in pain signaling. Physiol Rev 99:1079–1151

    CAS  PubMed  Google Scholar 

  • Bercik P, Wang L, Verdu EF et al (2004) Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology 127:179–187

    PubMed  Google Scholar 

  • Bhangoo SK, Ripsch MS, Buchanan DJ, Miller RJ, White FA (2009) Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy. Mol Pain 5:48

    PubMed  PubMed Central  Google Scholar 

  • Bjorling DE, Wang ZY, Boldon K, Bushman W (2008) Bacterial cystitis is accompanied by increased peripheral thermal sensitivity in mice. J Urol 179:759–763

    PubMed  Google Scholar 

  • Bove SE, Flatters SJ, Inglis JJ, Mantyh PW (2009) New advances in musculoskeletal pain. Brain Res Rev 60:187–201

    CAS  PubMed  Google Scholar 

  • Brennan TJ, Vandermeulen EP, Gebhart GF (1996) Characterization of a rat model of incisional pain. Pain 64:493–501

    CAS  PubMed  Google Scholar 

  • Bruce JC, Oatway MA, Weaver LC (2002) Chronic pain after clip-compression injury of the rat spinal cord. Exp Neurol 178:33–48

    PubMed  Google Scholar 

  • Butler SH, Godefroy F, Besson JM, Weil-Fugazza J (1992) A limited model for chronic pain studies in the rat. Pain 48:73–81

    CAS  PubMed  Google Scholar 

  • Buvanendran A, Kroin JS, Kerns JM, Nagalla SN, Tuman KJ (2004) Characterization of a new animal model for evaluation of persistent postthoracotomy pain. Anesth Analg 99:1453–1460

    PubMed  Google Scholar 

  • Cahill CM, Dray A, Coderre TJ (1998) Priming enhances endotoxin-induced thermal hyperalgesia and mechanical allodynia in rats. Brain Res 808:13–22

    CAS  PubMed  Google Scholar 

  • Cahill CM, Dray A, Coderre TJ (2003) Enhanced thermal antinociceptive potency and anti-allodynic effects of morphine following spinal administration of endotoxin. Brain Res 960:209–218

    CAS  PubMed  Google Scholar 

  • Cain DM, Vang D, Simone DA, Hebbel RP, Gupta K (2012) Mouse models for studying pain in sickle disease: effects of strain, age, and acuteness. Br J Haematol 156:535–544

    CAS  PubMed  Google Scholar 

  • Catheline G, Touquet B, Besson JM, Lombard MC (2006) Parturition in the rat: a physiological pain model. Anesthesiology 104:1257–1265

    PubMed  Google Scholar 

  • Ceccarelli I, Scaramuzzino A, Massafra C, Aloisi AM (2003) The behavioral and neuronal effects induced by repetitive nociceptive stimulation are affected by gonadal hormones in male rats. Pain 104:35–47

    CAS  PubMed  Google Scholar 

  • Chacur M, Milligan ED, Gazda LS et al (2001) A new model of sciatic inflammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats. Pain 94:231–244

    CAS  PubMed  Google Scholar 

  • Challa SR (2015) Surgical animal models of neuropathic pain: pros and cons. Int J Neurosci 125:170–174

    CAS  PubMed  Google Scholar 

  • Chanda ML, Tuttle AH, Baran I et al (2013) Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain 154:1254–1262

    PubMed  Google Scholar 

  • Chen SR, Pan HL (2005) Effect of systemic and intrathecal gabapentin on allodynia in a new rat model of postherpetic neuralgia. Brain Res 1042:108–113

    CAS  PubMed  Google Scholar 

  • Chidiac JJ, Rifai K, Hawwa NN, Massaad CA, Jurjus AR, Jabbur SJ, Saadé NE (2002) Nociceptive behaviour induced by dental application of irritants to rat incisors: a new model for tooth inflammatory pain. Eur J Pain 6:55–67

    PubMed  Google Scholar 

  • Christensen MD, Everhart AW, Pickelman JT, Hulsebosch CE (1996) Mechanical and thermal allodynia in chronic central pain following spinal cord injury. Pain 68:97–107

    CAS  PubMed  Google Scholar 

  • Christianson CA, Corr M, Firestein GS, Mobargha A, Yaksh TL, Svensson CI (2010) Characterization of the acute and persistent pain state present in K/BxN serum transfer arthritis. Pain 151:394–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coderre TJ (2011) Complex regional pain syndrome—type I: what’s in a name? J Pain 12:2–12

    PubMed  Google Scholar 

  • Coderre TJ, Bennett GJ (2010) A hypothesis for the cause of complex regional pain syndrome-type I (reflex sympathetic dystrophy): pain due to deep-tissue microvascular pathology. Pain Med 11:1224–1238

    PubMed  Google Scholar 

  • Coderre TJ, Wall PD (1987) Ankle joint urate arthritis (AJUA) in rats: an alternative animal model of arthritis to that produced by Freund's adjuvant. Pain 28:379–393

    CAS  PubMed  Google Scholar 

  • Coderre TJ, Vaccarino AL, Melzack R (1990) Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Res 535:155–158

    CAS  PubMed  Google Scholar 

  • Coderre TJ, Fundytus ME, McKenna JE, Dalal S, Melzack R (1993a) The formalin test: a validation of the weighted-scores method of behavioural pain rating. Pain 54:43–50

    CAS  PubMed  Google Scholar 

  • Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993b) Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52:259–285

    CAS  PubMed  Google Scholar 

  • Coderre TJ, Xanthos DN, Francis L, Bennett GJ (2004) Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain 112:94–105

    PubMed  Google Scholar 

  • Colleoni M, Sacerdote P (2010) Murine models of human neuropathic pain. Biochim Biophys Acta 1802(10):924–933. https://doi.org/10.1016/j.bbadis.2009.10.012

    Article  CAS  PubMed  Google Scholar 

  • Courteix C, Eschalier A, Lavarenne J (1993) Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53:81–88

    CAS  PubMed  Google Scholar 

  • Coutinho SV, Plotsky PM, Sablad M et al (2002) Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol 282:G307–G316

    CAS  PubMed  Google Scholar 

  • Currie GL, Delaney A, Bennett MI et al (2013) Animal models of bone cancer pain: systematic review and meta-analyses. Pain 154:917–926

    PubMed  Google Scholar 

  • D’Amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79

    Google Scholar 

  • Davidson E, Coppey L, Lu B, Arballo V, Calcutt NA, Gerard C, Yorek M (2009) The roles of streptozotocin neurotoxicity and neutral endopeptidase in murine experimental diabetic neuropathy. Exp Diabetes Res 2009:431980

    PubMed  Google Scholar 

  • De Rantere D, Schuster CJ, Reimer JN, Pang DSJ (2016) The relationship between the rat grimace scale and mechanical hypersensitivity testing in three experimental pain models. Eur J Pain 20:417–426

    PubMed  Google Scholar 

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    CAS  PubMed  Google Scholar 

  • DeLeo JA, Coombs DW, Willenbring S, Colburn RW, Fromm C, Wagner R, Twitchell BB (1994) Characterization of a neuropathic pain model: sciatic cryoneurolysis in the rat. Pain 56:9–16

    CAS  PubMed  Google Scholar 

  • Depoortere R, Meleine M, Bardin L, Aliaga M, Muller E, Ardid D, Newman-Tancredi A (2011) Milnacipran is active in models of irritable bowel syndrome and abdominal visceral pain in rodents. Eur J Pharmacol 672:83–87

    CAS  PubMed  Google Scholar 

  • DeSantana JM, Sluka KA (2008) Central mechanisms in the maintenance of chronic widespread noninflammatory muscle pain. Curr Pain Headache Rep 12:338–343

    PubMed  PubMed Central  Google Scholar 

  • DeSantana JM, da Cruz KM, Sluka KA (2013) Animal models of fibromyalgia. Arthritis Res Ther 15:222

    PubMed  PubMed Central  Google Scholar 

  • Dina OA, Barletta J, Chen X, Mutero A, Martin A, Messing RO, Levine JD (2000) Key role for the epsilon isoform of protein kinase C in painful alcoholic neuropathy in the rat. J Neurosci 20:8614–8619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drel VR, Mashtalir N, Ilnytska O, Shin J, Li F, Lyzogubov VV, Obrosova IG (2006) The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 55:3335–3343

    CAS  PubMed  Google Scholar 

  • Dubuisson D, Dennis SG (1977) The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 4:161–174

    CAS  PubMed  Google Scholar 

  • Farmer MA, Taylor AM, Bailey AL et al (2011) Repeated vulvovaginal fungal infections cause persistent pain in a mouse model of vulvodynia. Sci Transl Med 3:101ra91

    PubMed  PubMed Central  Google Scholar 

  • Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Meth 39:175–191

    Google Scholar 

  • Fernihough J, Gentry C, Malcangio M et al (2004) Pain related behaviour in two models of osteoarthritic in the rat knee. Pain 112:83–93

    PubMed  Google Scholar 

  • Flatters SJL (2008) Characterization of a model of persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Pain 13:119–130

    Google Scholar 

  • Fleetwood-Walker SM, Quinn JP, Wallace C et al (1999) Behavioural changes in the rat following infection with varicella-zoster virus. J Gen Virol 80:2433–2436

    CAS  PubMed  Google Scholar 

  • Fox A, Eastwood C, Gentry C, Manning D, Urban L (1999) Critical evaluation of the streptozotocin model of painful diabetic neuropathy in the rat. Pain 81:307–316

    CAS  PubMed  Google Scholar 

  • Fujii Y, Ozaki N, Taguchi T, Mizumura K, Furukawa K, Sugiura Y (2008) TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain 140:292–304

    CAS  PubMed  Google Scholar 

  • Gallagher JJ, Tajerian M, Guo T et al (2013) Acute and chronic phases of complex regional pain syndrome in mice are accompanied by distinct transcriptional changes in the spinal cord. Mol Pain 9:40–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gazelius B, Cui JG, Svensson M, Meyerson B, Linderoth B (1996) Photochemically induced ischaemic lesion of the rat sciatic nerve. A novel method providing high incidence of mononeuropathy. NeuroReport 7:2619–2623

    CAS  PubMed  Google Scholar 

  • Gegelashvili G, Bjerrum OJ (2019) Glutamate transport system as a key constituent of glutamosome: molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2019.04.029

    Article  PubMed  Google Scholar 

  • Gelgor L, Phillips S, Mitchell D (1986) Hyperalgesia following ischaemia of the rat's tail. Pain 24:251–257

    CAS  PubMed  Google Scholar 

  • Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR, Agrawal YO (2016) Challenges and issues with streptozotocin-induced diabetes—a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 244:49–63

    CAS  PubMed  Google Scholar 

  • Griffin TM, Fermor B, Huebner JL et al (2010) Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice. Arthritis Res Ther 12:R130

    PubMed  PubMed Central  Google Scholar 

  • Guo TZ, Offley SC, Boyd EA, Jacobs CR, Kingery WS (2004) Substance P signaling contributes to the vascular and nociceptive abnormalities observed in a tibial fracture rat model of complex regional pain syndrome type I. Pain 108:95–107

    CAS  PubMed  Google Scholar 

  • Guo Y, Logan H, Glueck D, Muller KE (2013) Selecting a sample size for studies with repeated measures. BMC Med Res Meth 13:100–108

    Google Scholar 

  • Guo TZ, Wei T, Li WW, Li XQ, Clark JD, Kingery WS (2014) Immobilization contributes to exaggerated neuropeptide signaling, inflammatory changes, and nociceptive sensitization after fracture in rats. J Pain 15:1033–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasnie FS, Wallace VCJ, Hefner K, Holmes A, Rice ASC (2007) Mechanical and cold hypersensitivity in nerve-injured C57BL/56J mice is not associated with fear-avoidance- and depression-related behaviour. Br J Anaesth 98:816–822

    CAS  PubMed  Google Scholar 

  • Hayes AG, Sheehan MJ, Tyers MB (1987) Differential sensitivity of models of antinociception in the rat, mouse and guinea-pig to mu- and kappa-opioid receptor agonists. Br J Pharmacol 91:823–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert MK, Holzer P (2002) Why are substance P (NK1)-receptor antagonists ineffective in pain treatment? Anaesthesist 51:308–319

    CAS  PubMed  Google Scholar 

  • Hill R (2000) NK1 (substance P) receptor antagonists—why are they not analgesic in humans? Trends Pharmacol Sci 21:244–246

    CAS  PubMed  Google Scholar 

  • Honore P, Mantyh PW (2000) Bone cancer pain: from mechanism to model to therapy. Pain Med 1:303–309

    CAS  PubMed  Google Scholar 

  • Hu JW, Sessle BJ, Raboisson P, Dallel R, Woda A (1992) Stimulation of craniofacial muscle afferents induces prolonged facilitatory effects in trigeminal nociceptive brain-stem neurones. Pain 48:53–60

    CAS  PubMed  Google Scholar 

  • Hulsebosch CE, Xu GY, Perez-Polo JR, Westlund KN, Taylor CP, McAdoo DJ (2000) Rodent model of chronic central pain after spinal cord contusion injury and effects of gabapentin. J Neurotrauma 17:1205–1217

    CAS  PubMed  Google Scholar 

  • Imamura Y, Kawamoto H, Nakanishi O (1997) Characterization of heat-hyperalgesia in an experimental trigeminal neuropathy in rats. Exp Brain Res 116:97–103

    CAS  PubMed  Google Scholar 

  • Iwata K, Tashiro A, Tsuboi Y et al (1999) Medullary dorsal horn neuronal activity in rats with persistent temporomandibular joint and perioral inflammation. J Neurophysiol 82:1244–1253

    CAS  PubMed  Google Scholar 

  • Jaggi AS, Jain V, Singh N (2011) Animal models of neuropathic pain. Fundam Clin Pharmacol 25:1–28

    CAS  PubMed  Google Scholar 

  • Jasmin L, Kohan L, Franssen M, Janni G, Goff JR (1998) The cold plate as a test of nociceptive behaviors: description and application to the study of chronic neuropathic and inflammatory pain models. Pain 75:367–382

    CAS  PubMed  Google Scholar 

  • Jimenez-Andrade JM, Martin CD, Koewler NJ et al (2007) Nerve growth factor sequestering therapy attenuates non-malignant skeletal pain following fracture. Pain 133:183–196

    CAS  PubMed  Google Scholar 

  • Joseph EK, Chen X, Khasar SG, Levine JD (2004) Novel mechanism of enhanced nociception in a model of AIDS therapy-induced painful peripheral neuropathy in the rat. Pain 107:147–158

    PubMed  Google Scholar 

  • Kim SH, Chung JM (1992) An experimental-model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    CAS  Google Scholar 

  • Kitayama T (2018) The role of K+-Cl–cotransporter-2 in neuropathic pain. Neurochem Res 43:110–115

    PubMed  Google Scholar 

  • Klafke JZ, da Silva MA, Rossato MF et al (2016) Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms. Pflugers Arch Eur J Physiol 468:229–241

    CAS  Google Scholar 

  • Kontinen VK, Kauppila T, Paananen S, Pertovaara A, Kalso E (1999) Behavioural measures of depression and anxiety in rats with spinal nerve ligation-induced neuropathy. Pain 80:341–346

    CAS  PubMed  Google Scholar 

  • Koo ST, Park YI, Lim KS, Chung K, Chung JM (2002) Acupuncture analgesia in a new rat model of ankle sprain pain. Pain 99:423–431

    PubMed  Google Scholar 

  • LaBuda CJ, Cutler TD, Dougherty PM, Fuchs PN (2000) Mechanical and thermal hypersensitivity develops following kainate lesion of the ventral posterior lateral thalamus in rats. Neurosci Lett 290:79–83

    CAS  PubMed  Google Scholar 

  • Laferrière A, Millecamps M, Xanthos DN et al (2008) Cutaneous tactile allodynia associated with microvascular dysfunction in muscle. Mol Pain 4:49

    PubMed  PubMed Central  Google Scholar 

  • Laferriere A, Abaji R, Tsai CY, Ragavendran JV, Coderre TJ (2014) Topical combinations to treat microvascular dysfunction of chronic post ischemia pain. Anesth Analg 118:830–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson MH, Rapp L, Lindström E (2006) Effect of DSS-induced colitis on visceral sensitivity to colorectal distension in mice. Neurogastroenterol Motil 18:144–152

    CAS  PubMed  Google Scholar 

  • Lee SJ, Seo AJ, Park BS, Jo HW, Huh Y (2014) Neuropathic pain model of peripheral neuropathies mediated by mutations of glycyl-tRNA synthetase. J Korean Med Sci 29:1138–1144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt M, Heybach JP (1981) The deafferentation syndrome in genetically blind rats: a model of the painful phantom limb. Pain 10:67–73

    CAS  PubMed  Google Scholar 

  • Lindsay TH, Jonas BM, Sevcik MA et al (2005) Pancreatic cancer pain and its correlation with changes in tumor vasculature, macrophage infiltration, neuronal innervation, body weight, and disease progression. Pain 119:233–246

    CAS  PubMed  Google Scholar 

  • Ling B, Authier N, Balayssac D, Eschalier A, Coudore F (2005) Assessment of nociception in acrylamide-induced neuropathy in rats. Pain 119:104–112

    CAS  PubMed  Google Scholar 

  • Liu MG, Chen J (2014) Preclinical research on pain comorbidity with affective disorders and cognitive deficits: challenges and perspectives. Prog Neurobiol 116:13–32

    PubMed  Google Scholar 

  • Lombard MC, Nashold BS Jr, Albe-Fessard D, Salman N, Sakr C (1979) Deafferentation hypersensitivity in the rat after dorsal rhizotomy: a possible animal model of chronic pain. Pain 6:163–174

    CAS  PubMed  Google Scholar 

  • Malfait AM, Schnitzer TJ (2013) Towards a mechanism-based approach to pain management in osteoarthritis. Nat Rev Rheumatol 9:654–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao J (2009) Translational pain research: achievements and challenges. J Pain 10:1001–1011

    PubMed  PubMed Central  Google Scholar 

  • Martin TJ, Buechler NL, Kahn W, Crews JC, Eisenach JC (2004) Effects of laparotomy on spontaneous exploratory activity and conditioned operant responding in the rat: a model for postoperative pain. Anesthesiology 101:191–203

    CAS  PubMed  Google Scholar 

  • Melo-Carrillo A, Lopez-Avila A (2013) A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia 33:1096–1105

    PubMed  Google Scholar 

  • Millecamps M, Tajerian M, Naso L, Sage EH, Stone LS (2012) Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice. Pain 153:1167–1179

    PubMed  Google Scholar 

  • Mogil JS (2009) Animal models of pain: progress and challenges. Nat Rev Neurosci 10:283–294

    CAS  PubMed  Google Scholar 

  • Mogil JS, Davis KD, Derbyshire SW (2010) The necessity of animal models in pain research. Pain 151:12–17

    PubMed  Google Scholar 

  • Mosconi T, Kruger L (1996) Fixed-diameter polyethylene cuffs applied to the rat sciatic nerve induce a painful neuropathy: ultrastructural morphometric analysis of axonal alterations. Pain 64:37–57

    CAS  PubMed  Google Scholar 

  • Na HS, Han JS, Ko KH, Hong SK (1994) A behavioral model for peripheral neuropathy produced in rat’s tail by inferior caudal trunk injury. Neurosci Lett 177:50–52

    CAS  PubMed  Google Scholar 

  • Nagamine K, Ozaki N, Shinoda M et al (2006) Mechanical allodynia and thermal hyperalgesia induced by experimental squamous cell carcinoma of the lower gingiva in rats. J Pain 7:659–670

    PubMed  Google Scholar 

  • Ness TJ, Gebhart GF (1988) Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudoaffective reflexes in the rat. Brain Res 450:153–169

    CAS  PubMed  Google Scholar 

  • Nozaki-Taguchi N, Yaksh TL (1998) A novel model of primary and secondary hyperalgesia after mild thermal injury in the rat. Neurosci Lett 254:25–28

    CAS  PubMed  Google Scholar 

  • Nyland JE, McLean SA, Averitt DL (2015) Prior stress exposure increases pain behaviors in a rat model of full thickness thermal injury. Burns 41:1796–1804

    PubMed  Google Scholar 

  • Ogbonna AC, Clark AK, Gentry C, Hobbs C, Malcangio M (2013) Pain-like behaviour and spinal changes in the monosodium iodoacetate model of osteoarthritis in C57Bl/6 mice. Eur J Pain 17:514–526

    CAS  PubMed  Google Scholar 

  • Okuda K, Nakahama H, Miyakawa H, Shima K (1984) Arthritis induced in cat by sodium urate: a possible animal model for tonic pain. Pain 18:287–297

    CAS  PubMed  Google Scholar 

  • Olechowski CJ, Truong JJ, Kerr BJ (2009) Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain 141:156–164

    CAS  PubMed  Google Scholar 

  • Olmarker K, Iwabuchi M, Larsson K, Rydevik B (1998) Walking analysis of rats subjected to experimental disc herniation. Eur Spine J 7:394–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson CM (1956) Development of arthritis, periarthritis, and periostitis in rats given adjuvant. Proc Soc Exp Biol Med 91:95

    CAS  PubMed  Google Scholar 

  • Percie du Sert N, Rice AS (2014) Improving the translation of analgesic drugs to the clinic: animal models of neuropathic pain. Br J Pharmacol 171:2951–2963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perrot S, Guilbaud G, Kayser V (1999) Effects of intraplantar morphine on paw edema and pain-related behaviour in a rat model of repeated acute inflammation. Pain 83:249–257

    CAS  PubMed  Google Scholar 

  • Peter-Szabo M, Kekesi G, Nagy E, Sziver E, Benedek G, Horvath G (2007) Quantitative characterization of a repeated acute joint inflammation model in rats. Clin Exp Pharm Physiol 34:520–526

    CAS  Google Scholar 

  • Pogatzki EM, Niemeier JS, Brennan TJ (2002) Persistent secondary hyperalgesia after gastrocnemius incision in the rat. Eur J Pain 6:295–305

    PubMed  Google Scholar 

  • Polomano RC, Mannes AJ, Clark US, Bennett GJ (2001) A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 94:293–304

    CAS  PubMed  Google Scholar 

  • Ragavendran JV, Laferrière A, Khorashadi M, Coderre TJ (2014) Pentoxifylline reduces chronic post-ischemia pain by alleviating microvascular dysfunction. Eur J Pain 18:406–414

    PubMed  Google Scholar 

  • Rainsford KD (1982) Adjuvant polyarthritis in rats: is this a satisfactory model for screening anti-arthritic drugs. Agents Actions 12(1982):452–458

    CAS  PubMed  Google Scholar 

  • Reeve AJ, Patel S, Fox A, Walker K, Urban L (2000) Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur J Pain 4:247–257

    CAS  PubMed  Google Scholar 

  • Ren K, Hylden JL, Williams GM, Ruda MA, Dubner R (1992) The effects of a non-competitive NMDA receptor antagonist, MK-801, on behavioral hyperalgesia and dorsal horn neuronal activity in rats with unilateral inflammation. Pain 50:331–344

    CAS  PubMed  Google Scholar 

  • Rice ASC, Cimino-Brown D, Eisenach JC et al (2008) Animal models and the prediction of efficacy in clinical trials of analgesic drugs: a critical appraisal and call for uniform reporting standards. Pain 139:243–247

    PubMed  Google Scholar 

  • Rice ASC, Finnerup NB, Kemp HI, Currie GL, Baron R (2018) Sensory profiling in animal models of neuropathic pain: a call for back-translation. Pain 159:819–824

    PubMed  PubMed Central  Google Scholar 

  • Rodrigues-Filho R, Santos AR, Bertelli JA, Calixto JB (2003) Avulsion injury of the rat brachial plexus triggers hyperalgesia and allodynia in the hindpaws: a new model for the study of neuropathic pain. Brain Res 982:186–194

    CAS  PubMed  Google Scholar 

  • Rosland JH, Tjolsen A, Maehle B, Hole K (1990) The formalin test in mice: effect of formalin concentration. Pain 42:235–242

    CAS  PubMed  Google Scholar 

  • Roveroni RC, Parada CA, Veiga MCFA, Tambeli CH (2001) Development of a behavioral model of TMJ pain in rats: the TMJ formalin test. Pain 94:185–191

    CAS  PubMed  Google Scholar 

  • Roza C, Laird JM, Cervero F (1998) Spinal mechanisms underlying persistent pain and referred hyperalgesia in rats with an experimental ureteric stone. J Neurophysiol 79:1603–1612

    CAS  PubMed  Google Scholar 

  • Scanzi J, Accarie A, Muller E et al (2016) Colonic overexpression of the T-type calcium channel Ca(v) 3.2 in a mouse model of visceral hypersensitivity and in irritable bowel syndrome patients. Neurogastroenterol Motil 28:1632–1640

    CAS  PubMed  Google Scholar 

  • Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218

    CAS  PubMed  Google Scholar 

  • Seo HS, Kim HW, Roh DH et al (2008) A new rat model for thrombus-induced ischemic pain (TIIP); development of bilateral mechanical allodynia. Pain 139:520–532

    PubMed  Google Scholar 

  • Seo BK, Park DS, Baek YH (2013) The analgesic effect of electroacupuncture on inflammatory pain in the rat model of collagenase-induced arthritis: mediation by opioidergic receptors. Rheumatol Int 33:1177–1183

    CAS  PubMed  Google Scholar 

  • Shamji MF, Allen KD, So S et al (2009) Gait abnormalities and inflammatory cytokines in an autologous nucleus pulposus model of radiculopathy. Spine 34:648–654

    PubMed  PubMed Central  Google Scholar 

  • Shi X, Guo TZ, Wei T, Li WW, Clark DJ, Kingery WS (2015) Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to postfracture nociceptive sensitization. Pain 156:1852–1863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoyama M, Tanaka K, Hasue F, Shimoyama N (2002) A mouse model of neuropathic cancer pain. Pain 99:167–174

    PubMed  Google Scholar 

  • Siegel SM, Lee JW, Oaklander AL (2007) Needlestick distal nerve injury in rats models symptoms of complex regional pain syndrome. Anesth Analg 105:1820–1829

    PubMed  Google Scholar 

  • Siegmund E, Cadmus R, Lu G (1957) A method for evaluating both non-narcotic and narcotic analgesics. Proc Soc Exp Biol Med 95:729–731

    CAS  PubMed  Google Scholar 

  • Sluka KA, Karla A, Moore SA (2001) Unilateral intramuscular injections of acidic saline produce a bilateral long-lasting hyperalgesia. Muscle Nerve 24:37–46

    CAS  PubMed  Google Scholar 

  • Song XJ, Gan Q, Cao JL, Wang ZB, Rupert RL (2006) Spinal manipulation reduces pain and hyperalgesia after lumbar intervertebral foramen inflammation in the rat. J Manipul Physiol Ther 29:5–13

    Google Scholar 

  • Stein C, Millan MJ, Herz A (1988) Unilateral inflammation of the hindpaw in rats as a model of prolonged noxious stimulation: alterations in behavior and nociceptive thresholds. Pharmacol Biochem Behav 31:445–451

    CAS  PubMed  Google Scholar 

  • Strong JA, Xie W, Bataille FJ, Zhang JM (2013) Preclinical studies of low back pain. Mol Pain 9:17

    PubMed  PubMed Central  Google Scholar 

  • Susskind EC, Howland EW (1980) Measuring effect magnitude in repeated measures ANOVA designs: Implications for gerontological research. J Gerontol 35:867–876

    CAS  PubMed  Google Scholar 

  • Tajerian M, Leu D, Yang P, Huang TT, Kingery WS, Clark JD (2015) Differential efficacy of ketamine in the acute versus chronic stages of complex regional pain syndrome in mice. Anesthesiology 12:1435–1447

    Google Scholar 

  • Tjolsen A, Berge O-G, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an evaluation of the method. Pain 51:5–17

    CAS  PubMed  Google Scholar 

  • Vera-Portocarrero LP, Lu Y, Westlund KN (2003) Nociception in persistent pancreatitis in rats: effects of morphine and neuropeptide alterations. Anesthesiology 98:474–484

    CAS  PubMed  Google Scholar 

  • Vos BP, Strassman AM, Maciewicz RJ (1994) Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat’s infraorbital nerve. J Neurosci 14:2708–2723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker K, Dray A, Perkins M (1996) Hyperalgesia in rats following intracerebroventricular administration of endotoxin: effect of bradykinin B1 and B2 receptor antagonist treatment. Pain 65:211–219

    CAS  PubMed  Google Scholar 

  • Wall PD, Scadding JW, Tomkiewicz MM (1979) The production and prevention of experimental anesthesia dolorosa. Pain 6:175–182

    CAS  PubMed  Google Scholar 

  • Wasserman JK, Koeberle PD (2009) Development and characterization of a hemorrhagic rat model of central post-stroke pain. Neuroscience 161:173–183

    CAS  PubMed  Google Scholar 

  • Winkelstein BA (2011) How can animal models inform on the transition to chronic symptoms in whiplash? Spine 36(25 Suppl):S218–S225

    PubMed  PubMed Central  Google Scholar 

  • Woodcock J, Witter J, Dionne RA (2007) Stimulating the development of mechanism-based, individualized pain therapies. Nat Rev Drug Discov 6:703–710

    CAS  PubMed  Google Scholar 

  • Woolfe G, MacDonald AD (1944) The evaluation of the analgesic action of pethidine hydrochloride (Demerol). J Pharm Exp Ther 80:300–307

    CAS  Google Scholar 

  • Xu XJ, Hao JX, Aldskogius H, Seiger A, Wiesenfeld-Hallin Z (1992) Chronic pain-related syndrome in rats after ischemic spinal cord lesion: a possible animal model for pain in patients with spinal cord injury. Pain 48:279–290

    CAS  PubMed  Google Scholar 

  • Yezierski RP, Hansson P (2018) Inflammatory and neuropathic pain from bench to bedside: what went wrong? J Pain 19:571–588

    PubMed  Google Scholar 

  • Yezierski RP, Liu S, Ruenes GL, Kajander KJ, Brewer KL (1998) Excitotoxic spinal cord injury: behavioral and morphological characteristics of a central pain model. Pain 75:141–155

    CAS  PubMed  Google Scholar 

  • Zahn PK, Brennan TJ (1999) Primary and secondary hyperalgesia in a rat model for human postoperative pain. Anesthesiology 90:863–872

    CAS  PubMed  Google Scholar 

  • Zhang J-M, Song XJ, LaMotte RH (1999) Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J Neurophysiol 82:3359–3366

    CAS  PubMed  Google Scholar 

  • Zhang HW, Iida Y, Andoh T, Nojima H, Murata J, Saiki I, Kuraishi Y (2003) Mechanical hypersensitivity and alterations in cutaneous nerve fibers in a mouse model of skin cancer pain. J Pharmacol Sci 91:167–170

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TJC has received grants from the Canadian Institutes of Health, the Quebec Pain Research Network and the Louise and Alan Edwards Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence J. Coderre.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coderre, T.J., Laferrière, A. The emergence of animal models of chronic pain and logistical and methodological issues concerning their use. J Neural Transm 127, 393–406 (2020). https://doi.org/10.1007/s00702-019-02103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-019-02103-y

Keywords

Navigation