Skip to main content

Advertisement

Log in

Clinical applications of CYP genotyping in psychiatry

  • Psychiatry and Preclinical Psychiatric Studies - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

A critical review of the limited available evidence and the authors’ experience and judgment are used to summarize the role of cytochrome P450 (CYP) genetic variants in the pharmacokinetics of and clinical response to psychotropic medications. CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 genetic polymorphisms and their contributions to the metabolism of psychotropic drugs are reviewed. CYP1A2, CYP2B6 and CYP3A4 genotyping have limited current clinical utility. CYP2C9 genotyping has no utility in psychiatry. Psychiatrists should master tricyclic antidepressant (TCA) prescription, and if they use TCAs, they should have expertise in CYP2D6 and CYP2C19 genotyping and in TCA therapeutic drug monitoring (TDM) to safely dose TCAs. Practice guidelines recommend dose changes, TDM or alternate drugs for (1) CYP2C19 ultrarapid metabolizers (UM) taking citalopram or escitalopram; (2) CYP2C19 poor metabolizers (PMs) taking sertraline; (3) CYP2D6 PMs taking venlafaxine, aripiprazole, haloperidol, risperidone or zuclopenthixol; and (4) CYP2D6 UMs taking venlafaxine, aripiprazole, haloperidol, risperidone, zuclopenthixol or atomoxetine. According to the prescribing information, CYP2D6 PMs should receive 75 % of the average long-acting aripiprazole dose and pimozide doses >4 mg/day should not be prescribed without CYP2D6 genotyping. In a situation of limited evidence, there is need to use the available pharmacological mechanistic information for better personalizing treatment in psychiatry. This is best done by combining CYP genotyping with TDM. Clozapine and risperidone concentration-to-dose ratios are provided as two examples of this approach of how to integrate CYP genotyping and TDM in psychiatry. New studies are needed to verify that CYP2C19 PM genotyping may have potential to identify clozapine PMs and explain the lower clozapine metabolic capacity in East Asians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alessandrini M, Asfaha S, Dodgen TM, Warnich L, Pepper MS (2013) Cytochrome P450 pharmacogenetics in African populations. Drug Metab Rev 45:253–275

    CAS  PubMed  Google Scholar 

  • Benowitz NL, Zhu AZX, Tyndale RF et al (2013) Influence of CYP2B6 genetic variants on plasma and urine concentrations of bupropion and metabolites at steady state. Pharmacogenetics Genomics 23:135–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berecz R, de la Rubia A, Dorado P et al (2003) Thioridazine steady-state plasma concentrations are influenced by tobacco smoking and CYP2D6, but not by the CYP2C9 genotype. Eur J Clin Pharmacol 59:45–50

    CAS  PubMed  Google Scholar 

  • Bertilsson L (2007) Metabolism of antidepressant and neuroleptic drugs by cytochrome P450s: clinical and interethnic aspects. Clin Pharmacol Ther 82:606–609

    CAS  PubMed  Google Scholar 

  • Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A (2002) Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 53:111–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bork JA, Rogers T, Wedlund PJ, de Leon J (1999) A pilot study on risperidone metabolism: the role of cytochromes P450 2D6 and 3A. J Clin Psychiatry 60:469–476

    CAS  PubMed  Google Scholar 

  • Brosen K, Klysner R, Gram LF et al (1986) Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 30:679–684

    CAS  PubMed  Google Scholar 

  • Bunten H, Liang WJ, Pounder D et al (2011) CYP2B6 and OPRM1 gene variations predict methadone-related deaths. Addict Biol 16:142–144

    CAS  PubMed  Google Scholar 

  • Cabaleiro T, López-Rodríguez R, Ochoa D et al (2013) Polymorphisms influencing olanzapine metabolism and adverse effects in healthy subjects. Hum Psychopharmacol 28:205–214

    CAS  PubMed  Google Scholar 

  • Carlsson B, Olsson G, Reis M et al (2001) Enantioselective analysis of citalopram and metabolites in adolescents. Ther Drug Monit 23:658–664

    CAS  PubMed  Google Scholar 

  • Carrillo JA, Dahl ML, Svensson JO et al (1996) Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 60:183–190

    CAS  PubMed  Google Scholar 

  • Carrillo JA, Herraiz AG, Ramos SI et al (2003) Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol 23:119–127

    CAS  PubMed  Google Scholar 

  • Chang WH, Lin SK, Lane HY (1997) Clozapine dosages and plasma drug concentrations. J Formos Med Assoc 96:599–605

    CAS  PubMed  Google Scholar 

  • Charlier C, Broly F, Lhermitte M et al (2003) Polymorphisms in the CYP2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit 25:738–742

    CAS  PubMed  Google Scholar 

  • Chou WH, Yan FX, de Leon J et al (2000) Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol 20:246–251

    CAS  PubMed  Google Scholar 

  • Cozza KL, Armstrong SC, Oesterheld JR (2003) Concise guide to drug interaction principles for medical practice: cytochrome P450s, UGTs, P-glycoproteins, 2nd edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Crettol S, Déglon JJ, Besson J et al (2005) Methadone enantiomer plasma levels, CYP2B6, CYP2C19, and CYP2C9 genotypes, and response to treatment. Clin Pharmacol Ther 78:593–604

    CAS  PubMed  Google Scholar 

  • Crettol S, de Leon J, Hiemke C, Eap CB (2014) Pharmacogenomics in psychiatry: from therapeutic drug monitoring to genomic medicine. Clin Pharmacol Ther 95:254–257

    CAS  PubMed  Google Scholar 

  • Dahl ML (2002) Cytochrome p450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 41:453–470

    CAS  PubMed  Google Scholar 

  • Dahl ML, Bertilsson L, Nordin C (1996) Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite: relationship to the CYP2D6 genotype. Psychopharmacology 123:315–319

    CAS  PubMed  Google Scholar 

  • Dahl-Puustinen ML, Liden A, Alm C et al (1989) Disposition of perphenazine is related to polymorphic debrisoquine hydroxylation in human beings. Clin Pharmacol Ther 46:78–81

    CAS  PubMed  Google Scholar 

  • Dai D, Tang J, Rose R, Hodgson E et al (2001) Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 299:825–831

    CAS  PubMed  Google Scholar 

  • Dalen P, Dahl ML, Ruiz ML et al (1998) 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 63:444–452

    CAS  PubMed  Google Scholar 

  • de Leon J (2006) AmpliChip CYP450 test: personalized medicine has arrived in psychiatry. Expert Rev Mol Diagn 6:277–286

    PubMed  Google Scholar 

  • de Leon J (2007) The crucial role of the therapeutic window in understanding the clinical relevance of the poor versus the ultrarapid metabolizer phenotypes in subjects taking drugs metabolized by CYP2D6 or CYP2C19. J Clin Psychopharmacol 27:241–245

    PubMed  Google Scholar 

  • de Leon J (2008) The potential of genotyping. Science 321:769

    PubMed  Google Scholar 

  • de Leon J (2009) The future (or lack of future) of personalized prescription in psychiatry. Pharmacol Res 59:81–89

    PubMed  Google Scholar 

  • de Leon J (2012) Evidence-based medicine versus personalized medicine: are they enemies? J Clin Psychopharmacol 32:153–164

    PubMed  Google Scholar 

  • de Leon J (2014a) False-negative studies may systematically contaminate the literature on the effects of inducers in neuropsychopharmacology. Part I: focus on epilepsy. J Clin Psychopharmacol 34:177–183

    PubMed  Google Scholar 

  • de Leon J (2014b) False-negative studies may systematically contaminate the literature on the effects of inducers in neuropsychopharmacology: part II: focus on bipolar disorder. J Clin Psychopharmacol 34:291–296

    PubMed  Google Scholar 

  • de Leon J, Armstrong SC, Cozza KL (2006a) Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychosomatics 47:75–85

    PubMed  Google Scholar 

  • de Leon J, Greenlee B, Barber J et al (2009a) Practical guidelines for the use of new generation antipsychotic drugs (except clozapine) in adult individuals with intellectual disabilities. Res Dev Disabil 30:613–669

    PubMed  Google Scholar 

  • de Leon J, Sandson NB, Cozza KL (2008) A preliminary attempt to personalize risperidone dosing using drug–drug interactions and genetics: part II. Psychosomatics 49:347–361

    PubMed  Google Scholar 

  • de Leon J, Santoro V, D’Arrigo C, Spina E (2012) Interactions between antiepileptics and second-generation antipsychotics. Exp Opin Drug Metab Toxicol 8:311–334

    Google Scholar 

  • de Leon J, Spina E, Diaz FJ (2013) Clobazam therapeutic drug monitoring: a comprehensive review of the literature with proposals to improve future studies. Ther Drug Monit 35:30–47

    PubMed Central  PubMed  Google Scholar 

  • de Leon J, Spina E, Diaz FJ (2009b) Pharmacokinetic drug interaction studies must consider pharmacological heterogeneity, use of repeated dosing, and translation into a message understandable to practicing clinicians. J Clin Psychopharmacol 29:201–205

    PubMed  Google Scholar 

  • de Leon J, Susce MT, Johnson M et al (2009c) DNA microarray technology in the clinical environment: the AmpliChip CYP450 test for CYP2D6 and CYP2C19 genotyping. CNS Spectr 14:19–34

    PubMed  Google Scholar 

  • de Leon J, Susce MT, Murray-Carmichael E (2006b) The AmpliChip CYP450 genotyping test: integrating a new clinical tool. Mol Diagn Ther 10:135–151

    PubMed  Google Scholar 

  • de Leon J, Susce MT, Pan RM et al (2005) The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 66:15–27

    PubMed  Google Scholar 

  • de Leon J, Susce MT, Pan RM et al (2007) A study of genetic (CYP2D6 and ABCB1) and environmental (drug inhibitors and inducers) variables that may influence plasma risperidone levels. Pharmacopsychiatry 40:93–102

    PubMed  Google Scholar 

  • de Leon J, Wynn G, Sandson NB (2010) The pharmacokinetics of paliperidone versus risperidone. Psychosomatics 51:80–88

    PubMed  Google Scholar 

  • Desta Z, Zhao X, Shin JG et al (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41:913–958

    CAS  PubMed  Google Scholar 

  • de Vos A, van der Weide J, Loovers HM (2011) Association between CYP2C19*17 and metabolism of amitriptyline, citalopram and clomipramine in Dutch hospitalized patients. Pharmacogenomics J 11:359–367

    PubMed  Google Scholar 

  • Drögemöller BI, Wright GE, Niehaus DJ, Emsley R, Warnich L (2013) Next-generation sequencing of pharmacogenes: a critical analysis focusing on schizophrenia treatment. Pharmacogenetics Genomics 23:666–674

    PubMed  Google Scholar 

  • Drögemöller BI, Wright GE, Warnich L (2014) Considerations for rare variants in drug metabolism genes and the clinical implications. Expert Opin Drug Metab Toxicol 10:873–884

    PubMed  Google Scholar 

  • Eap CB, Bender S, Jaquenoud SE et al (2004) Nonresponse to clozapine and ultrarapid CYP1A2 activity: clinical data and analysis of CYP1A2 gene. J Clin Psychopharmacol 24:214–219

    CAS  PubMed  Google Scholar 

  • Eap CB, Bondolfi G, Zullino D et al (2001) Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J Clin Psychopharmacol 21:330–334

    CAS  PubMed  Google Scholar 

  • Eap CB, Crettol S, Rougier JS et al (2007) Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers. Clin Pharmacol Ther 81:719–728

    CAS  PubMed  Google Scholar 

  • Eap CB, Lessard E, Baumann P et al (2003) Role of CYP2D6 in the stereoselective disposition of venlafaxine in humans. Pharmacogenetics 13:39–47

    CAS  PubMed  Google Scholar 

  • Eiermann B, Engel G, Johansson I et al (1997) The involvement of CYP1A2 and CYP3A4 in the metabolism of clozapine. Br J Clin Pharmacol 44:439–446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ereshefsky L (1996) Pharmacokinetics and drug interactions: update for new antipsychotics. J Clin Psychiatry 57(Suppl 11):12–25

    CAS  PubMed  Google Scholar 

  • Fang J, McKay G, Song J et al (2001) In vitro characterization of the metabolism of haloperidol using recombinant cytochrome p450 enzymes and human liver microsomes. Drug Metab Dispos 29:1638–1643

    CAS  PubMed  Google Scholar 

  • Fric M, Pfuhlmann B, Laux G et al (2008) The influence of smoking on the serum level of duloxetine. Pharmacopsychiatry 41:151–155

    CAS  PubMed  Google Scholar 

  • Fudio S, Borobia AM, Pinana E et al (2010) Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Eur J Pharmacol 626:200–204

    CAS  PubMed  Google Scholar 

  • Fukuda T, Nishida Y, Zhou Q et al (2000) The impact of the CYP2D6 and CYP2C19 genotypes on venlafaxine pharmacokinetics in a Japanese population. Eur J Clin Pharmacol 56:175–180

    CAS  PubMed  Google Scholar 

  • Gaohua L, Abduljalil K, Jamei M et al (2012) A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br J Clin Pharmacol 74:873–885

    PubMed Central  PubMed  Google Scholar 

  • Gerstenberg G, Aoshima T, Fukasawa T et al (2003) Effects of the CYP 2D6 genotype and cigarette smoking on the steady-state plasma concentrations of fluvoxamine and its major metabolite fluvoxamino acid in Japanese depressed patients. Ther Drug Monit 25:463–468

    CAS  PubMed  Google Scholar 

  • Grossman I, Sullivan PF, Walley N et al (2008) Genetic determinants of variable metabolism have little impact on the clinical use of leading antipsychotics in the CATIE study. Genet Med 10:720–729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hägg S, Spigset O, Lakso HA, Dahlqvist R (2001) Olanzapine disposition in humans is unrelated to CYP1A2 and CYP2D6 phenotypes. Eur J Clin Pharmacol 57:493–497

    PubMed  Google Scholar 

  • Hesse LM, Venkatakrishnan K, Court MH et al (2000) CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab Dispos 28:1176–1183

    CAS  PubMed  Google Scholar 

  • Hicks JK, Swen JJ, Thorn CF et al (2013) Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther 93:402–408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiemke C, Baumann P, Bergemann N et al (2011) AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 44:195–235

    Google Scholar 

  • Hiemke C, Pfuhlmann B (2012) Interactions and monitoring of antipsychotic drugs. Handb Exp Pharmacol 212:241–265

    CAS  PubMed  Google Scholar 

  • Hiemke C, Shams M (2013) Phenotyping and genotyping of drug metabolism to guide pharmacotherapy in psychiatry. Curr Drug Deliv 10:46–53

    CAS  PubMed  Google Scholar 

  • Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphism on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526

    CAS  PubMed  Google Scholar 

  • Inomata S, Nagashima A, Itagaki F et al (2005) CYP2C19 genotype affects diazepam pharmacokinetics and emergence from general anesthesia. Clin Pharmacol Ther 78:647–655

    CAS  PubMed  Google Scholar 

  • Jan MW, ZumBrunnen TL, Kazmi YR et al (2002) Pharmacokinetics of fluvoxamine in relation to CYP2C19 phenotype and genotype. Drug Metabol Drug Interact 19:1–11

    PubMed  Google Scholar 

  • Jaquenoud Sirot E, Knezevic B, Morena GP (2009) ABCB1 and cytochrome P450 polymorphisms: clinical pharmacogenetics of clozapine. J Clin Psychopharmacol 29:319–326

    CAS  PubMed  Google Scholar 

  • Jerling M, Dahl ML, Aberg-Wistedt A et al (1996) The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin Pharmacol Ther 59:423–428

    CAS  PubMed  Google Scholar 

  • Jiang ZP, Shu Y, Chen XP et al (2002) The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects. Eur J Clin Pharmacol 58:109–113

    CAS  PubMed  Google Scholar 

  • Jin Y, Pollock BG, Frank E et al (2010) Effect of age, weight, and CYP2C19 genotype on escitalopram exposure. J Clin Pharmacol 50:62–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson M, Markham-Abedi C, Susce MT et al (2006) A poor metabolizer for cytochromes P450 2D6 and 2C19: a case report on antidepressant treatment. CNS Spectr 11:757–760

    PubMed  Google Scholar 

  • Katoh Y, Uchida S, Kawai M et al (2010) Effects of cigarette smoking and cytochrome P450 2D6 genotype on fluvoxamine concentration in plasma of Japanese patients. Bio Pharm Bull 33:285–288

    CAS  Google Scholar 

  • Kawanishi C, Lundgren S, Agren H, Bertilsson L (2004) Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol 59:803–807

    CAS  PubMed  Google Scholar 

  • Kirchheiner J, Brosen K, Dahl ML et al (2001) CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation specific dosages. Acta Psychiatr Scand 104:173–192

    CAS  PubMed  Google Scholar 

  • Kirchheiner J, Klein C, Meineke I et al (2003) Bupropion and 4-OH bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 13:619–626

    CAS  PubMed  Google Scholar 

  • Kirchheiner J, Nickchen K, Bauer M et al (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9:442–473

    CAS  PubMed  Google Scholar 

  • Kohnke MD, Griese EU, Stosser D et al (2002) Cytochrome P4502D6 deficiency and its clinical relevance in a patient treated with risperidone. Pharmacopsychiatry 35:116–118

    CAS  PubMed  Google Scholar 

  • Kootstra-Ros JE, Smallegoor W, van der WJ (2005) The cytochrome P450 CYP1A2 genetic polymorphisms *1F and *1D do not affect clozapine clearance in a group of schizophrenic patients. Ann Clin Biochem 42:216–219

  • Koyama E, Tanaka T, Chiba K et al (1996) Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4′-hydroxylation status in Japanese depressive patients. J Clin Psychopharmacol 16:286–293

    CAS  PubMed  Google Scholar 

  • Laika B, Leucht S, Heres S et al (2010) Pharmacogenetics and olanzapine treatment: CYP1A2*1F and serotonergic polymorphisms influence therapeutic outcome. Pharmacogenomics J 10:20–29

    CAS  PubMed  Google Scholar 

  • Lantz RJ, Gillespie TA, Rash TJ et al (2003) Metabolism, excretion, and pharmacokinetics of duloxetine in healthy human subjects. Drug Metab Dispos 31:1142–1150

    CAS  PubMed  Google Scholar 

  • Lind AB, Reis M, Bengtsson F et al (2009) Steady-state concentrations of mirtazapine, N-desmethylmirtazapine, 8-hydroxymirtazapine and their enantiomers in relation to cytochrome P450 2D6 genotype, age and smoking behaviour. Clin Pharmacokinet 48:63–70

    CAS  PubMed  Google Scholar 

  • Linnet K (2002) Glucuronidation of olanzapine by cDNA-expressed human UDP-glucuronosyltransferases and human liver microsomes. Hum Psychopharmacol 17:233–238

    CAS  PubMed  Google Scholar 

  • Linnet K, Wiborg O (1996a) Influence of Cyp2D6 genetic polymorphism on ratios of steady-state serum concentration to dose of the neuroleptic zuclopenthixol. Ther Drug Monit 18:629–634

    CAS  PubMed  Google Scholar 

  • Linnet K, Wiborg O (1996b) Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin Pharmacol Ther 60:41–47

    CAS  PubMed  Google Scholar 

  • Liu ZQ, Cheng ZN, Huang SL et al (2001) Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br J Clin Pharmacol 52:96–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llerena A, Alm C, Dahl ML et al (1992) Haloperidol disposition is dependent on debrisoquine hydroxylation phenotype. Ther Drug Monit 14:92–97

    CAS  PubMed  Google Scholar 

  • Llerena A, Berecz R, Dorado P, de la Rubia A (2004a) QTc interval, CYP2D6 and CYP2C9 genotypes and risperidone plasma concentrations. J Psychopharmacol 18:189–193

    CAS  PubMed  Google Scholar 

  • Llerena A, Dorado P, Berecz R et al (2004b) Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. Eur J Clin Pharmacol 59:869–873

    CAS  PubMed  Google Scholar 

  • Martis S, Mey H, Vijzelar R et al (2013) Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics J 13:558–566

    CAS  PubMed  Google Scholar 

  • Matchar DB, Thakur ME, Grossman I et al (2006) Testing for cytochrome P450 polymorphisms in adults with non-psychotic depression treated with selective serotonin reuptake inhibitors (SSRIs). Evidence Report/Technology Assessment No. 146. (Prepared by the Duke Evidence-based Practice Center under Contract No. 290-02-0025.) Agency for Healthcare Research and Quality Publication No. 07-E002. Rockville. http://archive.ahrq.gov/downloads/pub/evidence/pdf/cyp450/cyp450.pdf. Accessed 23 June 2014

  • McAllister-Williams RH, Baldwin DS, Haddad PM et al (2010) The use of antidepressants in clinical practice: focus on agomelatine. Hum Psychopharmacol 25:95–102

    CAS  PubMed  Google Scholar 

  • Melkersson KI, Scordo MG, Gunes A, Dahl ML (2007) Impact of CYP1A2 and CYP2D6 polymorphisms on drug metabolism and on insulin and lipid elevations and insulin resistance in clozapine-treated patients. J Clin Psychiatry 68:697–704

    CAS  PubMed  Google Scholar 

  • Meyer UA (2004) Pharmacogenetics—five decades of therapeutic lessons from genetic diversity. Nat Rev 5:869–876

  • Mihara K, Suzuki A, Kondo T et al (1999) Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese patients with schizophrenia. Clin Pharmacol Ther 65:291–294

    CAS  PubMed  Google Scholar 

  • Mihara K, Kondo T, Suzuki A et al (2001) Effects of genetic polymorphism of CYP1A2 inducibility on the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine in depressed Japanese patients. Pharmacol Toxicol 88:267–270

    CAS  PubMed  Google Scholar 

  • Morinobu S, Tanaka T, Kawakatsu S et al (1997) Effects of genetic defects in the CYP2C19 gene on the N-demethylation of imipramine, and clinical outcome of imipramine therapy. Psychiatry Clin Neurosi 51:253–257

    CAS  Google Scholar 

  • Murayama N, Soyama A, Saito Y et al (2004) Six novel nonsynonymous CYP1A2 gene polymorphisms: catalytic activities of the naturally occurring variant enzymes. J Pharmacol Exp Ther 308:300–306

    CAS  PubMed  Google Scholar 

  • Nelson DR (2009) The cytochrome p450 homepage. Hum Genomics 4:59–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nichols AI, Lobello K, Guico-Pabia CJ et al (2009) Venlafaxine metabolism as a marker of cytochrome P450 enzyme 2D6 metabolizer status. J Clin Psychopharmacol 29:383–386

    CAS  PubMed  Google Scholar 

  • Noehr-Jensen L, Zwisler ST, Larsen F et al (2009) Impact of CYP2C19 phenotypes on escitalopram metabolism and an evaluation of pupillometry as a serotonergic biomarker. Eur J Clin Pharmacol 65:887–894

    CAS  PubMed  Google Scholar 

  • Nozawa M, Ohnuma T, Matsubara Y et al (2008) The relationship between the response of clinical symptoms and plasma olanzapine concentration, based on pharmacogenetics: Juntendo University Schizophrenia Projects (JUSP). Ther Drug Monit 30(1):35–40

    CAS  PubMed  Google Scholar 

  • Ostad Haji E, Hiemke C, Pfuhlmann B (2012) Therapeutic drug monitoring for antidepressant drug treatment. Curr Pharm Des 18:5818–5827

    PubMed  Google Scholar 

  • Otsuka America Pharmaceutical, Inc. (2013) Abilify maintena-aripiprazole. Highlights of prescribing information. Tokyo, Japan: Otsuka Pharmaceutical Co., Ltd. http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=ee49f3b1-1650-47ff-9fb1-ea53fe0b92b6#nlm34068-7. Accessed 28 June 2014

  • Ozdemir V, Bertilsson L, Miura J et al (2007) CYP2D6 genotype in relation to perphenazine concentration and pituitary pharmacodynamic tissue sensitivity in Asians: CYP2D6-serotonin-dopamine crosstalk revisited. Pharmacogenetics Genomics 17:339–347

    CAS  PubMed  Google Scholar 

  • Ozdemir V, Kalow W, Okey AB et al (2001) Treatment-resistance to clozapine in association with ultrarapid CYP1A2 activity and the C → A polymorphism in intron 1 of the CYP1A2 gene: effect of grapefruit juice and low-dose fluvoxamine. J Clin Psychopharmacol 21:603–607

    CAS  PubMed  Google Scholar 

  • Ozdemir V, Kalow W, Tang BK et al (2000) Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 10:373–388

    CAS  PubMed  Google Scholar 

  • Parker G, Fink M, Shorter E, Taylor MA et al (2010) Issues for DSM-5: whither melancholia? The case for its classification as a distinct mood disorder. Am J Psychiatry 167:745–747

    PubMed Central  PubMed  Google Scholar 

  • Pavanello S, Pulliero A, Lupi S et al (2005) Influence of the genetic polymorphism in the 5′-noncoding region of the CYP1A2 gene on CYP1A2 phenotype and urinary mutagenicity in smokers. Mutat Res 587:59–66

    CAS  PubMed  Google Scholar 

  • Porcelli S, Fabbri C, Spina E et al (2011) Genetic polymorphisms of cytochrome P450 enzymes and antidepressant metabolism. Exp Opin Drug Metab Toxicol 7:1101–1115

    CAS  Google Scholar 

  • Preskorn SH (1989) Tricyclic antidepressants: the whys and hows of therapeutic drug monitoring. J Clin Psychiatry 50(Suppl):34–42. (Discussion 43–46)

  • Preskorn SH, Kane CP, Lobello K et al (2013) Cytochrome P450 2D6 phenoconversion is common in patients being treated for depression: implications for personalized medicine. J Clin Psychiatry 74:614–621

    CAS  PubMed  Google Scholar 

  • Puranik YG, Birnbaum AK, Marino SE et al (2013) Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics 14:35–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rau T, Wohlleben G, Wuttke H et al (2004) CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants—a pilot study. Clin Pharmacol Ther 75:386–393

    CAS  PubMed  Google Scholar 

  • Ravyn D, Ravyn V, Lowney R, Nasrallah HA (2013) CYP450 pharmacogenetic treatment strategies for antipsychotics: a review of the evidence. Schizophr Res 149:1–14

    PubMed  Google Scholar 

  • Rendic S (2002) Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 34:83–448

    CAS  PubMed  Google Scholar 

  • Ring BJ, Catlow J, Lindsay TJ et al (1996) Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther 276:658–666

    CAS  PubMed  Google Scholar 

  • Rogers HL, Bhattaram A, Zineh I et al (2012) CYP2D6 genotype information to guide pimozide treatment in adult and pediatric patients: basis for the US Food and Drug Administration’s new dosing recommendations. J Clin Psychiatry 73:1187–1190

    CAS  PubMed  Google Scholar 

  • Roh HK, Kim CE, Chung WG et al (2001) Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients. Eur J Clin Pharmacol 57:671–675

    CAS  PubMed  Google Scholar 

  • Rudberg I, Mohebi B, Hermann M et al (2008) Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 83:322–327

    CAS  PubMed  Google Scholar 

  • Sachse C, Brockmoller J, Bauer S, Roots I (1999) Functional significance of a C → A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47:445–449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Samer CF, Lorenzini KI, Rollason V et al (2013) Applications of CYP450 testing in the clinical setting. Mol Diagn Ther 17:165–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawamura K, Suzuki Y, Someya T (2004) Effects of dosage and CYP2D6-mutated allele on plasma concentration of paroxetine. Eur J Clin Pharmacol 60:553–557

    CAS  PubMed  Google Scholar 

  • Schenk PW, van Vliet M, Mathot RA et al (2010) The CYP2C19*17 genotype is associated with lower imipramine plasma concentrations in a large group of depressed patients. Pharmacogenomics J 10:3229–3225

  • Scordo MG, Spina E (2002) Cytochrome P450 polymorphism and response to antipsychotic therapy. Pharmacogenomics 3:201–218

    CAS  PubMed  Google Scholar 

  • Scordo MG, Spina E, Dahl ML et al (2005) Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 97:296–301

    CAS  PubMed  Google Scholar 

  • Scordo MG, Spina E, Facciola G et al (1999) Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology 147:300–305

    CAS  PubMed  Google Scholar 

  • Scott SA, Sangkuhl K, Gardner EE et al (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther 90:328–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheffield LJ, Phillimore HE (2009) Clinical use of pharmacogenomic tests in 2009. Clin Biochem Rev 30:55–65

    PubMed Central  PubMed  Google Scholar 

  • Shen H, He MM, Liu H et al (2007) Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos 35:1292–1300

    CAS  PubMed  Google Scholar 

  • Shimada T, Yamazaki H, Mimura M et al (1994) Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423

    CAS  PubMed  Google Scholar 

  • Shimoda K, Someya T, Yokono A et al (2002) The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J Clin Psychopharmacol 22:371–378

    CAS  PubMed  Google Scholar 

  • Shirley KL, Hon YY, Penzak SR (2003) Correlation of cytochrome P450 (CYP) 1A2 activity using caffeine phenotyping and olanzapine disposition in healthy volunteers. Neuropsychopharmacology 28:961–966

    CAS  PubMed  Google Scholar 

  • Sistonen J, Sajantila A, Lao O et al (2007) CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics 17:93–101

  • Söderberg MM, Dahl ML (2013) Pharmacogenetics of olanzapine metabolism. Pharmacogenomics 14:1319–1336

    PubMed  Google Scholar 

  • Someya T, Shimoda K, Suzuki Y (2003) Effect of CYP2D6 genotypes on the metabolism of haloperidol in a Japanese psychiatric population. Neuropsychopharmacology 28:1501–1505

    CAS  PubMed  Google Scholar 

  • Spina E, de Leon J (2007) Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol 100:4–22

    CAS  PubMed  Google Scholar 

  • Spina E, de Leon J (2014) Clinically relevant interactions between newer antidepressants and second-generation antipsychotics. Exp Opin Drug Metab Toxicol 10:721–746

    CAS  Google Scholar 

  • Spina E, Gitto C, Avenoso A et al (1997) Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 51:395–398

    CAS  PubMed  Google Scholar 

  • Spina E, Santoro V, D’Arrigo C (2008) Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: an update. Clin Ther 30:1206–1227

    CAS  PubMed  Google Scholar 

  • Steimer W, Zopf K, Von Amelunxen S et al (2004) Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin Chem 50:1623–1633

    CAS  PubMed  Google Scholar 

  • Stormer E, von Moltke LL, Shader RI et al (2000) Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos 28:1168–1175

    CAS  PubMed  Google Scholar 

  • Strom CM, Goos D, Crossley B et al (2012) Testing for variants in CYP2C19: population frequencies and testing experience in a clinical laboratory. Genet Med 14:95–100

    CAS  PubMed  Google Scholar 

  • Suzuki A, Otani K, Mihara K et al (1997) Effects of the CYP2D6 genotype on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese schizophrenic patients. Pharmacogenetics 7:415–418

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Sugai T, Fukui N et al (2011) CYP2D6 genotype and smoking influence fluvoxamine steady-state concentration in Japanese psychiatric patients: lessons for genotype-phenotype association study design in translational pharmacogenetics. J Psychopharmacol 25:908–914

    CAS  PubMed  Google Scholar 

  • Swen JJ, Nijenhuis M, de Boer A et al (2011) Pharmacogenetics: from bench to byte—an update of guidelines. Clin Pharmacol Ther 89:662–673

    CAS  PubMed  Google Scholar 

  • The Human Cytochrome P450 (CYP) Allele Nomenclature Committee (2014) The human Cytochrome P450 (CYP) allele nomenclature database. http://www.cypalleles.ki.se/. Accessed 11 Aug 2014

  • Thieme D, Rolf B, Sachs H et al (2008) Correlation of inter-individual variations of amitriptyline metabolism examined in hairs with CYP2C19 and CYP2D6 polymorphisms. Int J Legal Med 122:149–155

    PubMed  Google Scholar 

  • Tiwari AK, Souza RP, Müller DJ (2009) Pharmacogenetics of anxiolytic drugs. J Neural Transm 116:667–677

    CAS  PubMed  Google Scholar 

  • Tod M, Goutelle S, Clavel-Grabit F et al (2011) Quantitative prediction of cytochrome P450 (CYP) 2D6-mediated drug interactions. Clin Pharmacokinet 50:519–530

    CAS  PubMed  Google Scholar 

  • Tsai MH, Lin KM, Hsiao MC et al (2010) Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics 11:537–546

    CAS  PubMed  Google Scholar 

  • Ueda M, Hirokane G, Morita S et al (2006) The impact of CYP2D6 genotypes on the plasma concentration of paroxetine in Japanese psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 30:486–491

    CAS  PubMed  Google Scholar 

  • van der Weide J, van Baalen-Benedek EH, Kootstra-Ros JE (2005) Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit 27:478–483

    PubMed  Google Scholar 

  • van der Weide K, van der Weide J (2014) The influence of the CYP3A4*22 polymorphism on serum concentration of quetiapine in psychiatric patients. J Clin Psychopharmacol 34:256–260

    PubMed  Google Scholar 

  • Veefkind AH, Haffmans PM, Hoencamp E (2000) Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 22:202–208

    CAS  PubMed  Google Scholar 

  • Wang JH, Liu ZQ, Wang W et al (2001) Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther 70:42–47

    CAS  PubMed  Google Scholar 

  • Watanabe J, Suzuki Y, Fukui N et al (2008) Dose-dependent effect of the CYP2D6 genotype on the steady-state fluvoxamine concentration. Ther Drug Monit 30:705–708

    CAS  PubMed  Google Scholar 

  • Whyte EM, Romkes M, Mulsant BH et al (2006) CYP2D6 genotype and venlafaxine-XR concentrations in depressed elderly. Int J Geriatr Psychiatry 21:542–549

    PubMed  Google Scholar 

  • Wong WB, Carlson JJ, Thariani R et al (2010) Cost effectiveness of pharmacogenomics: a critical and systematic review. Pharmacoeconomics 28:1001–1013

    PubMed  Google Scholar 

  • Yin OQ, Wing YK, Cheung Y et al (2006) Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. J Clin Psychopharmacol 26:367–372

    CAS  PubMed  Google Scholar 

  • Yokono A, Morita S, Someya T et al (2001) The effect of CYP2C19 and CYP2D6 genotypes on the metabolism of clomipramine in Japanese psychiatric patients. J Clin Psychopharmacol 21:549–555

    CAS  PubMed  Google Scholar 

  • Yu BN, Chen GL, He N et al (2003) Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19. Drug Metab Dispos 31:1255–1259

    CAS  PubMed  Google Scholar 

  • Yu KS, Yim DS, Cho JY et al (2001) Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. Clin Pharmacol Ther 69:266–273

    CAS  PubMed  Google Scholar 

  • Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141

    CAS  PubMed  Google Scholar 

  • Zhou SF (2009a) Polymorphism of human cytochrome P450 2D6 and its clinical significance. Part I. Clin Pharmacokinet 48:689–723

    CAS  Google Scholar 

  • Zhou SF (2009b) Polymorphism of human cytochrome P450 2D6 and its clinical significance. Part II. Clin Pharmacokinet 48:761–804

    CAS  PubMed  Google Scholar 

  • Zhou SF, Liu JP, Chowbay B (2009) Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 41:89–295

    CAS  PubMed  Google Scholar 

  • Zhou SF, Zhou ZW, Huang M (2010) Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology 278:165–188

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Lorraine Maw, M.A., and Margaret T. Boden, R.N., M.L.T., at the Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA, who helped in editing the article.

Conflict of interest

No commercial organizations had any role in the writing of this paper for publication. In the past few years, Dr. Spina has participated in speakers/advisory boards and lectures supported by AstraZeneca, Bristol-Myers, Eli Lilly & Co, Janssen Pharmaceuticals, Lundbeck and Pfizer. Dr. de Leon personally develops his presentations for lecturing, has never lectured using any pharmaceutical or pharmacogenetic company presentations and has never been a consultant for pharmacogenetic or pharmaceutical companies. In the past, Dr. de Leon received researcher-initiated grants from Eli Lilly (one ended in 2003 and the other, as co-investigator, ended in 2007); from Roche Molecular Systems, Inc. (ended in 2007); and, in a collaboration with Genomas, Inc., from the NIH Small Business Innovation Research program (ended in 2010). He has been on the advisory boards of Bristol-Myers Squibb (2003/2004) and AstraZeneca (2003). Roche Molecular Systems supported one of his educational presentations, which was published in a peer-reviewed journal (2005). His lectures were supported once by Sandoz (1997), twice by Lundbeck (1999 and 1999), twice by Pfizer (2001 and 2001), three times by Eli Lilly (2003, 2006 and 2006), twice by Janssen (2000 and 2006), once by Bristol-Myers Squibb (2006) and seven times by Roche Molecular Systems, Inc. (once in 2005 and six times in 2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Spina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spina, E., de Leon, J. Clinical applications of CYP genotyping in psychiatry. J Neural Transm 122, 5–28 (2015). https://doi.org/10.1007/s00702-014-1300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-014-1300-5

Keywords

Navigation