Skip to main content
Log in

A. Stern’s analysis of the nodal sets of some families of spherical harmonics revisited

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we revisit the analyses of Stern (Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen, W. Fr. Kaestner, Göttingen, 1925) and Lewy (Commun Partial Differ Equ 2(12):1233–1244, 1977) devoted to the construction of spherical harmonics with two or three nodal domains. Our method yields sharp quantitative results and a better understanding of the occurrence of bifurcations in the families of nodal sets. This paper is a natural continuation of our critical reading of A. Stern’s results for Dirichlet eigenfunctions in the square, see arXiv:14026054.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bérard, P., Meyer, D.: Inégalités isopérimétriques et applications. Annales scientifiques de l’École Normale Supérieure 15(3), 513–541 (1982)

    MATH  Google Scholar 

  2. Bérard, P., Helffer, B.: Dirichlet eigenfunctions of the square membrane: Courant’s property, and A. Stern’s and Å. Pleijel’s analyses. To appear in Springer Proceedings in Mathematics & Statistics (2015), MIMS-GGTM conference in memory of M. S. Baouendi. A. Baklouti, A. El Kacimi, S. Kallel, and N. Mir Editors. arXiv:14026054

  3. Bishop, C.J.: Some questions concerning harmonic measure. Dahlberg, B., et al., (eds.) Partial Differential equations with minimal smoothness and applications. IMA Vol. Math. Appl. 42, pp 89–97 (1992)

  4. Courant, R.: Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke. Nachr. Ges. Göttingen, pp. 81–84 (1923)

  5. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Wiley (1989)

  6. Eremenko, A., Jakobson, D., Nadirashvili, N.: On nodal sets and nodal domains on \(\mathbb{S}^2\). Annales Institut Fourier 57(7), 2345–2360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedland, S., Hayman, W.K.: Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions. Comment. Math. Helvetici 51, 133–161 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.: Nodal domains and spectral minimal partitions. Annales Institut Henri Poincaré (Analyse non linéaire) 26, 101–138 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.: On spectral minimal partitions: the case of the sphere. Around the research of Vladimir Maz’ya. III, pp. 153–178, Int. Math. Ser. 13, Springer (N.Y.) (2010)

  10. Helffer, B., Persson Sundqvist, M.: Nodal domains in the square-the Neumann case-. arXiv:1410.6702

  11. Karpushkin, V.N.: Topology of the zeros of eigenfunctions. Funktional Anal. i Prilozehen 23(3), 59–60 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Lewy, H.: On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere. Commun. Partial Differ. Equ. 2(12), 1233–1244 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leydold, J.: Knotenlinien und Knotengebiete von Eigenfunktionen. Diplom Arbeit, Universität Wien (1989), unpublished. Available at URL: http://othes.univie.ac.at/34443/

  14. Leydold, J.: Nodal properties of spherical harmonics. Dissertation Universität Wien (January 1993)

  15. Leydold, J.: On the number of nodal domains of spherical harmonics. Topology 35, 301–321 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. Springer-Verlag, Berlin (1966)

    Book  MATH  Google Scholar 

  17. Nazarov, F., Sodin, M.: On the number of nodal domains of random spherical harmonics. Amer. J. Math. 131, 1337–1357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peetre, J.: A generalization of Courant nodal theorem. Math. Scandinavica 5, 15–20 (1957)

    MathSciNet  MATH  Google Scholar 

  19. Pleijel, Å.: Remarks on Courant’s nodal theorem. Comm. Pure. Appl. Math. 9, 543–550 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  20. Polterovich, I.: Pleijel’s nodal domain theorem. Proc. Amer. Math. Soc. 137, 1021–1024 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stern, A.: Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen. Inaugural-Dissertation zur Erlangung der Doktorwürde der Hohen Mathematisch-Naturwissenschaftlichen Fakultät der Georg August-Universität zu Göttingen (30 Juli 1924). Druck der Dieterichschen Univertisäts-Buchdruckerei (W. Fr. Kaestner). Göttingen (1925)

  22. Stern, A.: Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen. Diss. Göttingen (30 Juli 1924). Extracts and annotations by P. Bérard and B. Helffer. Available at URL: http://www-fourier.ujf-grenoble.fr/~pberard/R/stern-1925-thesis-partial-reprod.pdf

  23. Szegö, G.: Orthogonal Polynomials. Fourth edition. Amer. Math. Soc. Colloquium Publications, Vol. XXIII, Amer. Math. Soc. Providence, R.I. (1975)

Download references

Acknowledgments

The authors would like to thank T. Hoffmann-Ostenhof and J. Leydold for useful discussions, and for providing the papers [13, 14]. They also thank the anonymous referee for his remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bérard.

Additional information

Communicated by G. Teschl.

Appendices

Appendix

Some simulations with Maple

In this appendix, we provide some pictures issued from numerical computations with Maple. The nodal sets are viewed in the exponential map at the north pole. The outer circle, at distance \(\pi \), is the cut-locus of \(p_{+}\) and corresponds to the south pole.

Figures 11 resp. 12 illustrate Proposition 1 in the cases \(\ell = 3\) (left) and \(\ell = 4\) (right), resp. \(\ell = 5\) (left) and \(\ell = 6\) (right). They display the nodal set of \(H^{\mu ,\ell }\) (black thick line), with \(\mu = 5\cdot 10^{-3}\) when \(\ell \) is odd, and \(\mu = 2\cdot 10^{-3}\) when \(\ell \) even. The figures in the top line also display the checkerboards associated with \(Z_{\ell }\) and \(W_{\ell }\).

Fig. 11
figure 11

Example 1: \(\ell = 3\) and \(\ell = 4\)

Fig. 12
figure 12

Example 1: \(\ell = 5\) and \(\ell = 6\)

Figure 13 illustrates the occurrence of critical zeros in Stern’s Example 1, with \(\ell = 3\). The corresponding Legendre polynomial is \(P_3(t) = \frac{1}{2} \, t \, (5 t^2-3)\,\). The polynomial \(P_2(t) = \frac{1}{2}\, (3t^2-1)\) has two roots \(\pm \, \frac{1}{\sqrt{3}}\,\). According to Sect. 3.2.1, there are twelve possible critical zeros, given in spherical coordinates by the points \(\left( \arccos (\pm \frac{1}{\sqrt{3}}),j\frac{\pi }{6}\right) \) with \(j \in \{1, 3, 5, 7, 9, 11\}\), and exactly two critical values of the parameter, \(\mu = \pm \,\sqrt{2}\,\). For \(\mu > 0\), there is exactly one critical value \(\mu = \sqrt{2}\), which is associated with six critical zeros.

Figure 13 shows the nodal set \(N(H^{\mu ,3})\) for \(\mu < \sqrt{2}\) (left), for \(\mu = \sqrt{2}\) (center) and for \(\mu > \sqrt{2}\) (right).

Fig. 13
figure 13

Appearance and disappearance of critical zeros

Figure 14 illustrates Proposition 2. The figures display the nodal set of the function \(H^{\mu }\) (thick lines), with \(\mu = 10^{-3}\) and \(\varepsilon = 0.4\). The figures in the top line also display the checkerboards associated with \(W, V_{\alpha }\). The great circle \(M'_0 \cup M'_1\) divides the sphere into two closed hemispheres. Each one contains a simple closed nodal curve tangent to the great circle at one of the poles. As usual, the south pole is represented by the outer circle (dotted line), the cut-locus of 0 in the tangent space at \(p_{+}\).

Fig. 14
figure 14

Example 2: \(\ell = 4\) and \(\ell = 6\)

Translation of citations from Stern’s thesis

We provide below a rough translation of the citations from Stern’s thesis in Sect. 1

[E1] ...one can for example easily show that on the sphere the numbers 2 or 3 occur as number of nodal domains for each eigenvalue, and that for the square, if we arrange the eigenvalues in increasing order, the number 2 always reappears as number of nodal domains. [K1] We shall then show that for each eigenvalue there exist eigenfunctions on the sphere whose nodal lines divide the sphere into 2 or 3 nodal domains only ...The number of nodal domains 2 occurs for the eigenvalues \(\lambda _n = (2r+1)(2r+2)\, ~r=1,2,\ldots \); [K2] similarly, we shall now show that 3 occurs as number of nodal domains for all eigenvalues \( \lambda _n =2r (2r+1), ~r=1,2,\ldots \).

[I1] Superimpose the systems of nodal lines of the two functions, and hatch the domains in which the functions have the same sign, then the nodal lines of the spherical function

$$\begin{aligned} P^{2r+1}_{2r+1} (\cos \vartheta )\cos (2r+1) \varphi + \mu P_{2r+1}(\cos \vartheta )\,,\quad \mu >0 \end{aligned}$$

can only pass in the non-hatched domains [I3]  and hence for values of \(\mu \) which are small enough, they stay in a neighborhood of the nodal lines of

$$\begin{aligned} P^{2r+1}_{2r+1} (\cos \vartheta )\cos (2r+1) \varphi , \end{aligned}$$

i.e.  the \(2r+1\) meridians, so that the system of nodal lines varies continuously with \(\mu \) .... [I2] Furthermore, the nodal lines must pass through the \(2(2r+1)^2\) intersection points of the system of nodal lines of the two above spherical functions ...

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bérard, P., Helffer, B. A. Stern’s analysis of the nodal sets of some families of spherical harmonics revisited. Monatsh Math 180, 435–468 (2016). https://doi.org/10.1007/s00605-015-0788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0788-6

Keywords

Mathematics Subject Classification

Navigation