Skip to main content
Log in

Analysis of citrate-capped gold and silver nanoparticles by thiol ligand exchange capillary electrophoresis

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the capillary electrophoretic behavior of citrate-capped gold and silver nanoparticles in aqueous medium when applying a ligand-exchange surface reaction with thiols. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) of similar size (39 ± 6 and 41 ± 7 nm, respectively) and shape were synthesized, covered with a citrate shell, and characterized by microscopic and spectroscopic techniques. The analysis of these NPs by CE was accomplished by using a buffer solution (pH 9.7; 40 mM SDS, 10 mM CAPS; 0.1 % methanol) containing the anions of thioctic acid or thiomalic acid. These are capable of differently interacting with the surface of the AuNPs and AgNPs and thus introducing additional negative charges. This results in different migration times due to the formation of differently charged nanoparticles.

Capillary electrophoretic behavior of citrate-capped gold and silver nanoparticles (NPs) in aqueous medium when applying a ligand-exchange surface reaction with thiols (thioctic and thiomalic acids), which introduces additional negative charges, has been studied

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17

    CAS  Google Scholar 

  2. Sperling RA, Rivera-Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896

    Article  CAS  Google Scholar 

  3. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209

    Article  CAS  Google Scholar 

  4. López-Lorente AI, Simonet BM, Valcárcel M, Mizaikoff B (2013) Bare gold nanoparticles mediated surface-enhanced Raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes. Anal Chim Acta 788:122

    Article  Google Scholar 

  5. Volkert AA, Subramaniam V, Ivanov MR, Goodman AM, Haes AJ (2011) Salt-mediated self-assembly of thioctic acid on gold nanoparticles. ACS Nano 5:4570

    Article  CAS  Google Scholar 

  6. Kato H, Suzuki M, Fujita K, Horie M, Endoh S, Yoshida Y, Iwahashi H, Takahashi K, Nakamura A, Kinugasa S (2009) Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol In Vitro 23:927

    Article  CAS  Google Scholar 

  7. Wei GT, Liu FK (1999) Separation of nanometer gold particles by size exclusion chromatography. J Chromatogr A 836:253

    Article  CAS  Google Scholar 

  8. Baalousha M, Stolpe B, Lead JR (2011) Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A 1218:4078

    Article  CAS  Google Scholar 

  9. López-Lorente AI, Simonet BM, Valcárcel M (2011) Electrophoretic methods for the analysis of nanoparticles. TrAC Trends Anal Chem 30:58

    Article  Google Scholar 

  10. Li L, Yu H, Liu D, You T (2013) A novel dark-field microscopy technique coupled with capillary electrophoresis for visual analysis of single nanoparticles. Analyst 138:3705

    Article  CAS  Google Scholar 

  11. Liu FK, Tsai MH, Hsu YC, Chu TC (2006) Analytical separation of Au/Ag core/shell nanoparticles by capillary electrophoresis. J Chromatogr A 1133:340

    Article  CAS  Google Scholar 

  12. Chang TH, Liu FK, Chang YC, Chu TC (2008) Rapidly characterizing the growth of Au nanoparticles by CE. Chromatographia 67:723

    Article  CAS  Google Scholar 

  13. Liu FK, Lin YY, Wu CH (2005) Highly efficient approach for characterizing nanometer-sized gold particles by capillary electrophoresis. Anal Chim Acta 528:249

    Article  CAS  Google Scholar 

  14. Lin KH, Chu TC, Liu FK (2007) On-line enhancement and separation of nanoparticles using capillary electrophoresis. J Chromatogr A 1161:314

    Article  CAS  Google Scholar 

  15. Liu FK, Ko FH, Huang PW, Wu CH, Chu TC (2005) Studying the size/shape separation and optical properties of silver nanoparticles by capillary electrophoresis. J Chromatrogr A 1062:139

    Article  CAS  Google Scholar 

  16. Arnaud I, Abid JP, Roussel C, Girault HH (2005) Size-selective separation of gold nanoparticles using isoelectric focusing electrophoresis (IEF). Chem Commun 787

  17. Gole AM, Sathivel C, Lachke A, Sastry M (1999) Size separation of colloidal nanoparticles using a miniscale isoelectric focusing technique. J Chromatogr A 848:485

    Article  CAS  Google Scholar 

  18. Bardelmeijer HA, Lingeman H, de Ruiter C, Underberg WJ (1998) Derivatization in capillary electrophoresis. J Chromatogr A 807:3

    Article  CAS  Google Scholar 

  19. Badia A, Lennox RB, Reven L (2000) A dynamic view of self-assembled monolayers. Acc Chem Res 33:475

    Article  CAS  Google Scholar 

  20. Zhu T, Vasilev K, Kreiter M, Mittler S, Knoll W (2003) Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosuccinic acid. Langmuir 19:9518

    Article  CAS  Google Scholar 

  21. Bücking W, Nann T (2006) Electrophoretic analysis of gold nanoparticles: size-dependent electrophoretic mobility of nanoparticles. IEE Proc Nanobiotechnol 153:47

    Article  Google Scholar 

  22. Paau MC, Lo CK, Yang X, Choi MMF (2009) Capillary electrophoretic study of thiolated α-cyclodextrin-capped gold nanoparticles with tetraalkylammonium ions. J Chromatogr A 1216:8557

    Article  CAS  Google Scholar 

  23. Lo CK, Paau MC, Xiao D, Choi MMF (2008) Application of capillary zone electrophoresis for separation of water-soluble gold monolayer-protected clusters. Electrophoresis 29:2330

    Article  CAS  Google Scholar 

  24. Xu X, Caswell KK, Tucker E, Kabisatpathy S, Brodhacker KL, Scrivens WA (2007) Size and shape separation of gold nanoparticles with preparative gel electrophoresis. J Chromatogr A 1167:35

    Article  CAS  Google Scholar 

  25. Hanauer M, Pierrat S, Zins I, Lotz A, Sönnichsen C (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7:2881

    Article  CAS  Google Scholar 

  26. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discus Faraday Soc 11:55

    Article  Google Scholar 

  27. López-Lorente AI, Simonet BM, Valcárcel M (2012) Rapid analysis of gold nanoparticles in liver and river water samples. Analyst 137:3528

    Article  Google Scholar 

  28. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391

    Article  CAS  Google Scholar 

  29. Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.4 to 5.2 nanometers: core and monolayer properties as a function of core size. Langmuir 14:17

    Article  CAS  Google Scholar 

  30. Liu FK, Chang YC (2010) Using thiol-capped gold nanoparticles in the background solution of MEKC to concentrate and separate neutral steroids. Chromatographia 72:1129

    Article  CAS  Google Scholar 

  31. Abad JM, Mertens SFL, Pita M, Fernandez VM, Schiffrin DJ (2005) Functionalization of thioctic acid-capped gold nanoparticles for specific immobilization of histidine-tagged proteins. J Am Chem Soc 127:5689

    Article  CAS  Google Scholar 

  32. Tournebize J, Boudier A, Sapin-Minet A, Maincent P, Leroy P, Schneider R (2012) Role of gold nanoparticles capping density on stability and surface reactivity to design drug delivery platforms. ACS Appl Mater Interfaces 4:5790

    Article  CAS  Google Scholar 

  33. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103

    Article  CAS  Google Scholar 

  34. Felice RD, Selloni A (2004) Adsorption modes of cysteine on Au(111): thiolate, amino-thiolate, disulfide. J Chem Phys 120:4906

    Article  Google Scholar 

  35. Dubois LH, Nuzzo RG (1992) Synthesis, structure, and properties of model organic surfaces. Annu Rev Phys Chem 43:437

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Spain’s Ministry of Innovation and Science for funding Project CTQ2011-23790 and Junta de Andalucía for Project FQM4801. A.I. López-Lorente also wishes to thank the Ministry for the award of a Research Training Fellowship (Grant AP2008-02939).

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Valcárcel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(PDF 687 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Lorente, Á.I., Soriano, M.L. & Valcárcel, M. Analysis of citrate-capped gold and silver nanoparticles by thiol ligand exchange capillary electrophoresis. Microchim Acta 181, 1789–1796 (2014). https://doi.org/10.1007/s00604-014-1218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1218-5

Keywords

Navigation