Skip to main content
Log in

An inorganic–organic hybrid material based on ZnO nanoparticles anchored to a composite made from polythiophene and hexagonally ordered silica for use in solid-phase fiber microextraction of PAHs

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on an inorganic–organic hybrid nanocomposite that represents a novel kind of fiber coating for solid-phase microextraction (SPME) of polycyclic aromatic hydrocarbons (PAHs). The material is composed of ZnO nanoparticles, polythiophene and hexagonally ordered silica, and displays good extraction capability due to its nanostructure. The nanocomposite was synthesized by an in-situ polymerization technique, and the ZnO nanoparticles were anchored to the pores in the walls. The ZnO/polythiophene/hexagonally ordered silica (ZnO/PT/SBA-15) nanocomposite was then deposited on a stainless steel wire to obtain the fiber for SPME of PAHs. Optimum conditions include an extraction temperature of 85 °C (for 30 min only), a desorption temperature of 260 °C (for 2 min), and a salt concentration (NaCl) of 20 % (w/v). The detection limits are between 8.2 and 20 pg mL−1, and the linear responses extend from 0.1 to 10 ng mL−1. The repeatability for one fiber (for n = 5), expressed as relative standard deviation, is between 4.3 and 9.1 %. The method offers the advantage of being simple to use, rapid, and low-cost (in terms of equipment). The thermal stability of the fiber and high relative recovery (compared to conventional methods) represent additional attractive features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. UN-ECE (1999) Strategies and policies for air pollution abatement, ECE/EB AIR/65. Major review prepared under the convention on long-range transboundary air pollution, United Nations, New York, Geneva, p. 144

  2. Kawanaka Y, Matsumoto E, Sakamoto K, Wang N, Yun S-J (2004) Size distributions of mutagenic compounds and mutagenicity in atmospheric particulate matter collected with a low-pressure cascade impactor. Atmos Environ 38:2125–2132

    Article  CAS  Google Scholar 

  3. Vo-Dinh T, Fetzer J, Campiglia AD (1998) Monitoring and characterization of polyaromatic compounds in the environment. Talanta 47:943–969

    Article  CAS  Google Scholar 

  4. USEPA (1992) Methods for the determination of metals in environmental samples. US Environmental Protection Agency, Cincinnati, p 339

    Google Scholar 

  5. Haskins SD, Duval JM, Kelly DG, Lundgreen-Nielsen SL, Weir RD (2012) Pressurized fluid extraction of polycyclic aromatic hydrocarbons using silanized extraction vessels. Microchim Acta 178:187–193

    Article  CAS  Google Scholar 

  6. Xiao J, Cheng J, Guo F, Hu H, Peng S, Zhang M, Chen M (2012) Ultrasound-assisted headspace ionic-liquid microextraction of polycyclic aromatic hydrocarbons at elevated temperatures. Microchim Acta 177:465–471

    Article  CAS  Google Scholar 

  7. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  8. Gholivand MB, Abolghasemi MM, Fattahpour P (2011) Polypyrrole/hexagonally ordered silica nanocomposite as a novel fiber coating for solid- phase microextraction. Anal Chim Acta 704:174–179

    Article  CAS  Google Scholar 

  9. Buchholz K, Pawliszyn J (1994) Optimization of solid-phase microextraction (SPME) conditions for phenol analysis. Anal Chem 66:160–167

    Article  CAS  Google Scholar 

  10. Magdic S, Boyd-Boland A, Jinno K, Pawliszyn J (1996) Analysis of organophosphorous insecticides from environmental samples by solid phase microextraction. J Chromatogr A 736:219–228

    Article  CAS  Google Scholar 

  11. Gholivand MB, Abolghasemi MM, Fattahpour P (2012) Highly porous silica-polyaniline nanocomposite as a novel solid-phase microextraction fiber coating. J Sep Sci 35:1–6

    Google Scholar 

  12. Sarafraz-Yazdi A, Ghaemi F, Amiri A (2012) Comparative study of the sol–gel based solid phase microextraction fibers in extraction of naphthalene, fluorene, anthracene and phenanthrene from saffron samples extractants. Microchim Acta 176:317–325

    Article  CAS  Google Scholar 

  13. Hashemi P, Badiei A, Shamizadeh M, Mohammadi Ziarani G, Ghiasvand AR (2012) Preparation of a new solid-phase microextraction fiber by coating silylated nanoporous silica on a copper wire. J Chin Chem Soc 59:727–732

    Article  CAS  Google Scholar 

  14. Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445

    Article  CAS  Google Scholar 

  15. Kind H, Yan H, Messer B, Law M, Yang P (2002) Nanowire ultraviolet photodetectors and optical switches. Adv Mater 14:158–160

    Article  CAS  Google Scholar 

  16. Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) Field-effect transistors based on single semiconducting oxide nanobelts. J Phys Chem B 107:659–663

    Article  CAS  Google Scholar 

  17. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  CAS  Google Scholar 

  18. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:445–449

    Google Scholar 

  19. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84:3654–3656

    Article  CAS  Google Scholar 

  20. Jeong MC, Oh BY, Ham MH, Myoung JM (2006) Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl Phys Lett 88:202105

    Article  CAS  Google Scholar 

  21. Xu CX, Sun XW, Chen BJ (2004) Field emission from gallium-doped zinc oxide nanofiber array. Appl Phys Lett 84:1540–1542

    Article  CAS  Google Scholar 

  22. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–623

    Article  CAS  Google Scholar 

  23. Rajeshwar K, de Tacconi NR, Chenthamarakshan CR (2001) Semiconductor-based composite materials: preparation, properties, and performance. Chem Mater 13:2765–2782

    Article  CAS  Google Scholar 

  24. Uygun A, Gul Yavuz A, Sen S, Omastová M (2009) Polythiophene/SiO2 nanocomposites prepared in the presence of surfactants and their application to glucose biosensing. Synth Met 159:2022–2028

    Article  CAS  Google Scholar 

  25. Zhang B, Chen X, Ma S, Chen Y, Yang J, Zhang M (2010) The enhancement of photoresponse of an ordered inorganic–organic hybrid architecture by increasing interfacial contacts. Nanotechnology 21:065304

    Article  CAS  Google Scholar 

  26. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  Google Scholar 

  27. Lee SJ, Lee JM, Cheong IW, Lee H, Kim JH (2007) A facile route of polythiophene nanoparticles via Fe3+ −catalyzed oxidative polymerization in aqueous medium. J Polym Sci Polym Chem 46:2097–2107

    Article  CAS  Google Scholar 

  28. Vietmeyer F, Seger B, Kamat PV (2007) Anchoring ZnO particles on functionalized single wall carbon nanotubes. Adv Mater 192:935–940

    Google Scholar 

  29. Pawliszyn J (ed) (1999) Applications of solid-phase microextraction. RSC, Cornwall

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Mahdi Abolghasemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abolghasemi, M.M., Yousefi, V. & Hazizadeh, B. An inorganic–organic hybrid material based on ZnO nanoparticles anchored to a composite made from polythiophene and hexagonally ordered silica for use in solid-phase fiber microextraction of PAHs. Microchim Acta 181, 639–645 (2014). https://doi.org/10.1007/s00604-014-1165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1165-1

Keywords

Navigation