Skip to main content

Advertisement

Log in

Associations of hip circumference and height with incidence of type 2 diabetes: the Isfahan diabetes prevention study

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the effects of hip circumference (HC) and height on diabetes incidence in non-diabetic first-degree relatives (FDRs) of patients with type 2 diabetes. A total of 1,092 (254 men and 838 women) non-diabetics FDRs ≥ 30 years old in 2003–2005 were followed through 2010 for the occurrence of type 2 diabetes. At baseline and through follow-ups, participants were underwent a standard 75 g 2-h oral glucose tolerance test. The incidence of type 2 diabetes was 17.0 (95% CI: 13.7, 20.2) (13.0 men and 18.1 women) per 1,000 person-year based on 6,015 person-years of follow-up. Height was inversely associated with diabetes incidence. The age-, gender-, and waist-adjusted relative risk (95% CI) of diabetes was 0.54 (0.31, 0.93) for highest quartile of height and 0.59 (0.25, 1.37) for highest quartile of HC compared with lowest quartile. These data indicate that height was inversely associated with diabetes incidence, independently of gender among FDRs of patients with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oda E, Kawai R (2010) Body mass index is more strongly associated with hypertension than waist circumference in apparently healthy Japanese men and women. Acta Diabetol 47:309–313

    Article  PubMed  Google Scholar 

  2. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000; 894:i–xii, 1–253

  3. Vazquez G, Duval S, Jacobs DR Jr, Silventoinen K (2007) Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev 29:115–128

    Article  PubMed  Google Scholar 

  4. Janghorbani M, Amini M (2010) Comparison of body mass index with abdominal obesity indicators and waist-to-stature ratio for prediction of type 2 diabetes: the Isfahan diabetes prevention study. Obes Res Clin Pract 4:e25–e32

    Article  Google Scholar 

  5. Schulze MB, Heidemann C, Schienkiewitz A, Bergmann MM, Hoffmann K, Boeing H (2006) Comparison of anthropometric characteristics in predicting the incidence of type 2 diabetes in the EPIC-potsdam study. Diabetes Care 29:1921–1923

    Article  PubMed  Google Scholar 

  6. Han TS, McNeill G, Seidell JC, Lean ME (1997) Predicting intra-abdominal fatness from anthropometric measures: the influence of stature. Int J Obes Relat Metab Disord 21:587–593

    Article  PubMed  CAS  Google Scholar 

  7. Pouliot MC, Despres JP, Lemieux S, Moorjani S, Bouchard C, Tremblay A et al (1994) Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 73:460–468

    Article  PubMed  CAS  Google Scholar 

  8. Ashwell M, Cole TJ, Dixon AK (1996) Ratio of waist circumference to height is a strong predictor of intra-abdominal fat. BMJ 313:559–560

    Article  PubMed  CAS  Google Scholar 

  9. Schreiner PJ, Terry JG, Evans GW, Hinson WH, Crouse GR III, Heiss G (1996) Sex-specific associations of magnetic resonance imaging–derived intra-abdominal and subcutaneous fat areas with conventional anthropometric indices. Am J Epidemiol 144:335–345

    Article  PubMed  CAS  Google Scholar 

  10. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CDA, Kostense PJ et al (2003) Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn study. Am J Clin Nutr 77:1192–1197

    PubMed  CAS  Google Scholar 

  11. Parker ED, Pereira MA, Stevens J, Folsom AR (2009) Association of hip circumference with incident diabetes and coronary heart disease: the atherosclerosis risk in communities study. Am J Epidemiol 169:837–847

    Article  PubMed  Google Scholar 

  12. Bozorgmanesh M, Hadaegh F, Zabetian A, Azizi F (2011). Impact of hip circumference and height on incident diabetes: results from 6-year follow-up in the Tehran lipid and glucose study. Diabet Med. doi:10.1111/j.1464-5491.2011.03343.x [Epub ahead of print]

  13. Snijder MB, Zimmet PZ, Visser M, Dekker JM, Seidell JC, Shaw JE (2004) Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: the AusDiab study. Int J Obes Relat Metab Disord 28:402–409

    Article  PubMed  CAS  Google Scholar 

  14. Esmaillzadeh A, Mirmiran P, Azadbakht L, Amiri P, Azizi F (2006) Independent and inverse association of hip circumference with metabolic risk factors in Tehranian adult men. Prev Med 42:354–357

    Article  PubMed  Google Scholar 

  15. Seidell JC, Han TS, Feskens EJ, Lean ME (1997) Narrow hips and broad waist circumferences independently contribute to increased risk of non-insulin-dependent diabetes mellitus. J Intern Med 242:401–406

    Article  PubMed  CAS  Google Scholar 

  16. Hartz AJ, Rupley DC, Rimm AA (1984) The association of girth measurements with disease in 32,856 women. Am J Epidemiol 119:71–80

    PubMed  CAS  Google Scholar 

  17. Lissner L, Björkelund C, Heitmann BL, Seidell JC, Bengtsson C (2001) Larger hip circumference independently predicts health and longevity in a Swedish female cohort. Obes Res 9:644–646

    Article  PubMed  CAS  Google Scholar 

  18. Wang S, Pan W, Hwu C, Ho L, Lo C, Lin S et al (1997) Incidence of NIDDM and the effects of gender, obesity, and hyperinsulinaemia in Taiwan. Diabetologia 40:1431–1438

    Article  PubMed  CAS  Google Scholar 

  19. Njølstad I, Amesen E, Lund-Larsen PG (1998) Sex differences in risk factors for clinical diabetes mellitus in a general population: a 12-year follow-up of the Finnmark Study. Am J Epidemiol 147:49–58

    Article  PubMed  Google Scholar 

  20. Lorenzo C, Williams K, Stern MP, Haffner SM (2009) Height, ethnicity and the incidence of diabetes: the San Antonio Heart Study. Metabolism 58:1530–1535

    Article  PubMed  CAS  Google Scholar 

  21. Hirschhorn JN, Lindgren CM, Daly MJ, Kirby A, Schaffner SF, Burtt NP et al (2001) Genomewide linkage analysis of stature in multiple populations reveals several regions with evidence of linkage to adult height. Am J Hum Genet 69:106–116

    Article  PubMed  CAS  Google Scholar 

  22. Park HS, Yim KS, Cho SI (2004) Gender differences in familial aggregation of obesity-related phenotypes and dietary intake pattern in Korean families. Ann Epidemiol 14:486–491

    Article  PubMed  Google Scholar 

  23. Li JK, Ng MC, So WY, Chiu CK, Ozaki R, Tong PC et al (2006) Phenotypic and genetic clustering of diabetes and metabolic syndrome in Chinese families with type 2 diabetes mellitus. Diabetes Metab Res Rev 22:46–52

    Article  PubMed  CAS  Google Scholar 

  24. Ramachandran A, Snehalatha C, Satyavani K, Sivasankari S, Vijay V (2000) Cosegregation of obesity with familial aggregation of type 2 diabetes mellitus. Diabetes Obes Metab 2:149–154

    Article  PubMed  CAS  Google Scholar 

  25. Resnick HE, Halter JB, Valsania P, Lin X (1998) Differential effect of BMI on diabetes risk among black and white Americans. Diabetes Care 21:1828–1835

    Article  PubMed  CAS  Google Scholar 

  26. Nakagami T, Qiao Q, Carstensen B, Nhr-Hansen C, Hu G, Tuomilehto J et al (2003) Age, body mass index and type 2 diabetes-associations modified by ethnicity. Diabetologia 46:1063–1070

    Article  PubMed  CAS  Google Scholar 

  27. Abate N, Chandalia M (2003) The impact of ethnicity on type 2 diabetes. J Diabetes Complications 17:39–58

    Article  PubMed  Google Scholar 

  28. Executive summary (2008) Standard of medical care in diabetes-2008. Diabetes Care 31:S5–S11

    Article  Google Scholar 

  29. Amini M, Janghorbani M (2007) Diabetes and impaired glucose regulation in first degree relatives of patients with type 2 diabetes in Isfahan, Iran: prevalence and risk factors. Rev Diabet Stud 4:169–176

    Article  PubMed  Google Scholar 

  30. Janghorbani M, Amini M (2011) Incidence of type 2 diabetes by HbA(1c) and OGTT: the Isfahan diabetes prevention study. Acta Diabetol (in press)

  31. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care Suppl 1:S5–S20

    Google Scholar 

  32. Friedewald WT, Levy RI, Fredrickson DS (1971) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    Google Scholar 

  33. Colditz GA, Willett WC, Stampfer MJ, Manson JE, Hennekens CH, Arky RA et al (1990) Weight as a risk factor for clinical diabetes in women. Am J pidemiol 132:501–513

    CAS  Google Scholar 

  34. Asao K, Kao WH, Baptiste-Roberts K, Bandeen-Roche K, Erlinger TP, Brancati FL (2006) Short stature and the risk of adiposity, insulin resistance, and type 2 diabetes in middle age: the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. Diabetes Care 29:1632–1637

    Article  PubMed  Google Scholar 

  35. Sandhu MS, Heald AH, Gibson JM, Cruickshank JK, Dunger DB, Wareham NJ (2002) Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: a prospective observational study. Lancet 359:1740–1745

    Article  PubMed  CAS  Google Scholar 

  36. Mattila C, Knekt P, Mannisto S, Rissanen H, Laaksonen MA, Montonen J et al (2007) Serum 25-hydroxyvitamin D concentration and subsequent risk of type 2 diabetes. Diabetes Care 30:2569–2570

    Article  PubMed  CAS  Google Scholar 

  37. Kremer R, Campbell PP, Reinhardt T, Gilsanz V (2009) Vitamin D status and its relationship to body fat, final height, and peak bone mass in young women. J Clin Endocrinol Metab 94:67–73

    Article  PubMed  CAS  Google Scholar 

  38. Snijder MB, Dekker JM, Visser M, Yudkin JS, Stehouwer CD, Bouter LM et al (2003) Larger thigh and hip circumferences are associated with better glucose tolerance: the Hoorn study. Obes Res 11:104–111

    Article  PubMed  Google Scholar 

  39. Conway B, Xiang YB, Villegas R, Zhang X, Li H, Wu X et al (2011) Hip circumference and the risk of type 2 diabetes in middle-aged and elderly men and women: the Shanghai women and Shanghai men’s health studies. Ann Epidemiol 21:358–366

    Article  PubMed  Google Scholar 

  40. Manolopous K, Karpe F, Frayn K (2010) Gluteofemoral body fat as a determinant of metabolic health. Int J Obes 34:949–959

    Article  Google Scholar 

  41. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Yudkin JS et al (2004) Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study. Diabetes Care 27:372–377

    Article  PubMed  Google Scholar 

  42. Ferreira I, Snijder MB, Twisk JW, van Mechelen W, Kemper HC, Seidell JC et al (2004) Central fat mass versus peripheral fat and lean mass: opposite (adverse versus favorable) associations with arterial stiffness? The Amsterdam growth and health longitudinal study. J Clin Endocrinol Metab 89:2632–2639

    Article  PubMed  CAS  Google Scholar 

  43. Tanko LB, Bagger YZ, Alexandersen P, Larsen PJ, Christiansen C (2003) Peripheral adiposity exhibits an independent dominant antiatherogenic effect in elderly women. Circulation 107:1626–1631

    Article  PubMed  Google Scholar 

  44. Van Pelt RE, Evans EM, Schechtman KB, Ehsani AA, Kohrt WM (2002) Contributions of total and regional fat mass to risk for cardiovascular disease in older women. Am J Physiol Endocrinol Metab 282:E1023–E1028

    PubMed  Google Scholar 

  45. Williams MJ, Hunter GR, Kekes-Szabo T, Snyder S, Treuth MS (1997) Regional fat distribution in women and risk of cardiovascular disease. Am J Clin Nutr 65:855–860

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Majid Abyar for computer technical assistance. This study could not have been conducted without the contribution of the FDRs of patients with type 2 diabetes who consented to participate.

Conflict of interest

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Janghorbani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janghorbani, M., Amini, M. Associations of hip circumference and height with incidence of type 2 diabetes: the Isfahan diabetes prevention study. Acta Diabetol 49 (Suppl 1), 107–114 (2012). https://doi.org/10.1007/s00592-011-0351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-011-0351-4

Keywords

Navigation