Skip to main content
Log in

Comparative clinical efficacy and safety of cortical bone trajectory screw fixation and traditional pedicle screw fixation in posterior lumbar fusion: a systematic review and meta-analysis

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To compare the clinical efficacy and safety between cortical bone trajectory (CBT) and pedicle screw (PS) in posterior lumbar fusion surgery.

Methods

Five electronic databases were used to identify relevant studies comparing the clinical efficacy and safety between CBT and PS. The main outcomes were postoperative fusion rates and complication (especially in superior facet joint violations, symptomatic ASD, wound infection, dural tear, screw malposition and hematoma). The secondary results included operation time, intraoperative blood loss, length of hospital stay, incision length, ODI, VAS, JOA score, JOA recovery rate, patients’ satisfaction and health-related quality of life.

Results

The outcomes showed that there was no significant difference in terms of fusion rate (p = 0.55), back and leg VAS score (p > 0.05), JOA score (p = 0.08) and incidence of reoperation (p = 0.07). However, CBT was superior to PS with Oswestry Disability Index (ODI) (p = 0.02), JOA recovery rate (p < 0.00001) and patients’ satisfaction (p = 0.001). In addition, CBT was superior to PS with significantly lower incidence of superior facet joint violation and symptomatic ASD. However, there was no significant difference regarding wound infection (p > 0.05) and screw malposition (p > 0.05). CBT group required significant shorter operation time, less blood loss, shorter incision length and shorter length of hospital stay in comparison with PS group (p < 0.05).

Conclusions

Both CBT and PS achieve similar, fusion rate and revision surgery rate. Furthermore, CBT is superior to PS with lower incidence of complications, shorter operation time, less blood loss, shorter incision length and shorter length of hospital stay.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Athanasakopoulos MMA, Triantafyllopoulos G, Koufos S, Pneumaticos SG (2013) Posterior spinal fusion using pedicle screws. Orthopedics 36:e951–e957. https://doi.org/10.3928/01477447-20130624-28

    Article  PubMed  Google Scholar 

  2. Cheng XZK, Sun X et al (2017) Clinical and radiographic outcomes of bilateral decompressionvia a unilateral approach with transforaminal lumbar interbody fusion for degenerative lumbarspondylolisthesis with stenosis. Spine J 17:1127–1133. https://doi.org/10.1016/j.spinee.2017.04.011

    Article  PubMed  Google Scholar 

  3. Lee NKK, Yi S et al (2017) Comparison of outcomes of anterior-, posterior- and transforaminal lumbar interbody.pdf. World Neurosurg 101:216–226. https://doi.org/10.1016/j.wneu.2017.01.114

    Article  PubMed  Google Scholar 

  4. Lidar ZBA, Lifshutz J, Maiman DJ (2005) Clinical and radiological relationship between posterior lumbar interbody fusion and posterolateral lumbar fusion. Surg Neurol 64:303–308. https://doi.org/10.1016/j.surneu.2005.03.025

    Article  PubMed  Google Scholar 

  5. Babu R, Park JG, Mehta AI, Shan T, Grossi PM, Brown CR, Richardson WJ, Isaacs RE, Bagley CA, Kuchibhatla M, Gottfried ON (2012) Comparison of superior-level facet joint violations during open and percutaneous pedicle screw placement. Neurosurgery 71:962–970. https://doi.org/10.1227/NEU.0b013e31826a88c8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Herren C, Reijnen M, Pishnamaz M, Lichte P, Andruszkow H, Nebelung S, Siewe J, Hildebrand F, Kobbe P (2018) Incidence and risk factors for facet joint violation in open versus minimally invasive procedures during pedicle screw placement in patients with trauma. World Neurosurg 112:e711–e718. https://doi.org/10.1016/j.wneu.2018.01.138

    Article  PubMed  Google Scholar 

  7. Liu J, Deng H, Long X, Chen X, Xu R, Liu Z (2016) A comparative study of perioperative complications between transforaminal versus posterior lumbar interbody fusion in degenerative lumbar spondylolisthesis. Eur Spine J 25:1575–1580. https://doi.org/10.1007/s00586-015-4086-8

    Article  PubMed  Google Scholar 

  8. Mehta VA, McGirt MJ, Garces Ambrossi GL, Parker SL, Sciubba DM, Bydon A, Wolinsky JP, Gokaslan ZL, Witham TF (2011) Trans-foraminal versus posterior lumbar interbody fusion: comparison of surgical morbidity. Neurol Res 33:38–42. https://doi.org/10.1179/016164110X12681290831289

    Article  PubMed  Google Scholar 

  9. Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA, Womack WJ, Puttlitz CM (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9:366–373. https://doi.org/10.1016/j.spinee.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  10. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Abe Y, Asazuma T, Chiba K (2016) Biomechanical evaluation of fixation strength among different sizes of pedicle screws using the cortical bone trajectory: what is the ideal screw size for optimal fixation? Acta Neurochir (Wien) 158:465–471. https://doi.org/10.1007/s00701-016-2705-8

    Article  Google Scholar 

  11. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Chiba K (2016) Biomechanical evaluation of lumbar pedicle screws in spondylolytic vertebrae: comparison of fixation strength between the traditional trajectory and a cortical bone trajectory. J Neurosurg Spine 24:910–915. https://doi.org/10.3171/2015.11.SPINE15926

    Article  PubMed  Google Scholar 

  12. Sansur CA, Caffes NM, Ibrahimi DM, Pratt NL, Lewis EM, Murgatroyd AA, Cunningham BW (2016) Biomechanical fixation properties of cortical versus transpedicular screws in the osteoporotic lumbar spine: an in vitro human cadaveric model. J Neurosurg Spine 25:467–476. https://doi.org/10.3171/2016.2.SPINE151046

    Article  PubMed  Google Scholar 

  13. Oshino H, Sakakibara T, Inaba T, Yoshikawa T, Kato T, Kasai Y (2015) A biomechanical comparison between cortical bone trajectory fixation and pedicle screw fixation. J Orthop Surg Res 10:125. https://doi.org/10.1186/s13018-015-0270-0

    Article  PubMed  PubMed Central  Google Scholar 

  14. Perez-Orribo L, Kalb S, Reyes P, Chang S, Crawford N (2013) Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support. Spine 38:635–641

    Article  PubMed  Google Scholar 

  15. Takenaka S, Mukai Y, Tateishi K, Hosono N, Fuji T, Kaito T (2017) Clinical outcomes after posterior lumbar interbody fusion: comparison of cortical bone trajectory and conventional pedicle screw insertion. Clin Spine Surg 30:E1411–E1418

    Article  PubMed  Google Scholar 

  16. Chin K, Pencle F, Coombs A, Elsharkawy M, Packer C, Hothem E, Seale J (2017) Clinical outcomes with midline cortical bone trajectory pedicle screws versus traditional pedicle screws in moving lumbar fusions from hospitals to outpatient surgery centers. Clin Spine Surg 30:E791–E797

    Article  PubMed  Google Scholar 

  17. Lee GW, Ahn MW (2018) Comparative study of cortical bone trajectory-pedicle screw (cortical screw) versus conventional pedicle screw in single-level posterior lumbar interbody fusion: a 2-year post hoc analysis from prospectively randomized data. World Neurosurg 109:e194–e202. https://doi.org/10.1016/j.wneu.2017.09.137

    Article  PubMed  Google Scholar 

  18. Marengo N, Ajello M, Pecoraro MF, Pilloni G, Vercelli G, Cofano F, Zenga F, Ducati A, Garbossa D (2018) Cortical bone trajectory screws in posterior lumbar interbody fusion: minimally invasive surgery for maximal muscle sparing—a prospective comparative study with the traditional open technique. Biomed Res Int 2018:7424568. https://doi.org/10.1155/2018/7424568

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marengo N, Berjano P, Cofano F, Ajello M, Zenga F, Pilloni G, Penner F, Petrone S, Vay L, Ducati A, Garbossa D (2018) Cortical bone trajectory screws for circumferential arthrodesis in lumbar degenerative spine: clinical and radiological outcomes of 101 cases. Eur Spine J. https://doi.org/10.1007/s00586-018-5599-8

    Article  PubMed  Google Scholar 

  20. Sakaura H, Miwa T, Yamashita T, Kuroda Y, Ohwada T (2016) Posterior lumbar interbody fusion with cortical bone trajectory screw fixation versus posterior lumbar interbody fusion using traditional pedicle screw fixation for degenerative lumbar spondylolisthesis: a comparative study. J Neurosurg Spine 25:591–595. https://doi.org/10.3171/2016.3.SPINE151525

    Article  PubMed  Google Scholar 

  21. Sakaura H, Miwa T, Yamashita T, Kuroda Y, Ohwada T (2018) Cortical bone trajectory screw fixation versus traditional pedicle screw fixation for 2-level posterior lumbar interbody fusion: comparison of surgical outcomes for 2-level degenerative lumbar spondylolisthesis. J Neurosurg Spine 28:57–62. https://doi.org/10.3171/2017.5.SPINE161154

    Article  PubMed  Google Scholar 

  22. Chen YR, Deb S, Pham L, Singh H (2016) Minimally invasive lumbar pedicle screw fixation using cortical bone trajectory—a prospective cohort study on postoperative pain outcomes. Cureus 8:e714. https://doi.org/10.7759/cureus.714

    Article  PubMed  PubMed Central  Google Scholar 

  23. Furlan AD, Malmivaara A, Chou R, Maher CG, Deyo RA, Schoene M, Bronfort G, van Tulder MW, Editorial Board of the Cochrane Back NG (2015) 2015 Updated method guideline for systematic reviews in the cochrane back and neck group. Spine (Phila Pa 1976) 40:1660–1673. https://doi.org/10.1097/brs.0000000000001061

    Article  Google Scholar 

  24. Stang A (2010) Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  Google Scholar 

  25. Hung CW, Wu MF, Hong RT, Weng MJ, Yu GF, Kao CH (2016) Comparison of multifidus muscle atrophy after posterior lumbar interbody fusion with conventional and cortical bone trajectory. Clin Neurol Neurosurg 145:41–45. https://doi.org/10.1016/j.clineuro.2016.03.005

    Article  PubMed  Google Scholar 

  26. Lee GW, Son JH, Ahn MW, Kim HJ, Yeom JS (2015) The comparison of pedicle screw and cortical screw in posterior lumbar interbody fusion: a prospective randomized noninferiority trial. Spine J 15:1519–1526. https://doi.org/10.1016/j.spinee.2015.02.038

    Article  PubMed  Google Scholar 

  27. Malcolm JG, Moore MK, Choksh FH, Ahmad FU, Refai D (2018) Comparing cortical trajectory transforaminal lumbar interbody fusions against pedicle trajectory transforaminal lumbar interbody fusions and posterolateral fusions: a retrospective cohort study of 90-day outcomes. Neurosurgery. https://doi.org/10.1093/neuros/nyx619

    Article  PubMed  Google Scholar 

  28. Orita S, Inage K, Kubota G, Sainoh T, Sato J, Fujimoto K, Shiga Y, Nakamura J, Matsuura Y, Eguchi Y, Aoki Y, Toyone T, Yamauchi K, Sakuma Y, Oikawa Y, Suzuki T, Takahashi K, Hynes RA, Ohtori S (2016) One-year prospective evaluation of the technique of percutaneous cortical bone trajectory spondylodesis in comparison with percutaneous pedicle screw fixation: a preliminary report with technical note. J Neurol Surg A Cent Eur Neurosurg 77:531–537. https://doi.org/10.1055/s-0035-1566118

    Article  PubMed  Google Scholar 

  29. Peng J, Zhan Y, Liu Y, Zong Y, Mao Y (2017) Comparison of effectiveness of cortical bone trajectory screw fixation and pedicle screw fixation in posterior lumbar interbody fusion. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 31:1341–1345. https://doi.org/10.7507/1002-1892.201706075

    Article  PubMed  Google Scholar 

  30. Xi YH, Wang Y, Yu JM, Liu XL, Xie N, Ye XJ (2016) Curative effect of cortical bone trajectory screw combined with pedicle screw in internal fixation for senile osteoporosis lumbar degenerative disease. Acad J Second Mil Med Univ 37:879–883. https://doi.org/10.16781/j.0258879x2016.07.0879

    Article  Google Scholar 

  31. Lee GW, Shin JH (2018) Comparative study of two surgical techniques for proximal adjacent segment pathology after posterior lumbar interbody fusion with pedicle screw: fusion extension using conventional pedicle screw versus cortical bone trajectory-pedicle screw (cortical screw). World Neurosurg. https://doi.org/10.1016/j.wneu.2018.05.218

    Article  PubMed  Google Scholar 

  32. Zeng ZL, Jia L, Xu W, Yu Y, Hu X, Jia YW, Wang JJ, Cheng LM (2015) Analysis of risk factors for adjacent superior vertebral pedicle-induced facet joint violation during the minimally invasive surgery transforaminal lumbar interbody fusion: a retrospective study. Eur J Med Res 20:80. https://doi.org/10.1186/s40001-015-0174-9

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lau D, Terman SW, Patel R, La Marca F, Park P (2013) Incidence of and risk factors for superior facet violation in minimally invasive versus open pedicle screw placement during transforaminal lumbar interbody fusion: a comparative analysis. J Neurosurg Spine 18:356–361. https://doi.org/10.3171/2013.1.SPINE12882

    Article  PubMed  Google Scholar 

  34. Niosi CAWD, Zhu Q, Keynan O, Wilson DR, Oxland TR (2008) The effect of dynamic posterior stabilization on facet joint contact forces: an in vitro investigation. Spine 33:19–26

    Article  PubMed  Google Scholar 

  35. Kim JY, Ryu DS, Paik HK, Ahn SS, Kang MS, Kim KH, Park JY, Chin DK, Kim KS, Cho YE, Kuh SU (2016) Paraspinal muscle, facet joint, and disc problems: risk factors for adjacent segment degeneration after lumbar fusion. Spine J 16:867–875. https://doi.org/10.1016/j.spinee.2016.03.010

    Article  PubMed  Google Scholar 

  36. Okuda S, Nagamoto Y, Matsumoto T, Sugiura T, Takahashi Y, Iwasaki M (2018) Adjacent segment disease after single segment posterior lumbar interbody fusion for degenerative spondylolisthesis: minimum 10 years follow up. Spine (Phila Pa 1976). https://doi.org/10.1097/brs.0000000000002710

    Article  Google Scholar 

  37. Tian H, Wu A, Guo M, Zhang K, Chen C, Li X, Cheng X, Zhou T, Murray SS, Sun X, Zhao J (2018) Adequate restoration of disc height and segmental lordosis by lumbar interbody fusion decreases adjacent segment degeneration. World Neurosurg. https://doi.org/10.1016/j.wneu.2018.07.075

    Article  PubMed  Google Scholar 

  38. Zhong ZM, Deviren V, Tay B, Burch S, Berven SH (2017) Adjacent segment disease after instrumented fusion for adult lumbar spondylolisthesis: incidence and risk factors. Clin Neurol Neurosurg 156:29–34. https://doi.org/10.1016/j.clineuro.2017.02.020

    Article  PubMed  Google Scholar 

  39. Rodriguez A, Neal MT, Liu A, Somasundaram A, Hsu W, Branch CL Jr (2014) Novel placement of cortical bone trajectory screws in previously instrumented pedicles for adjacent-segment lumbar disease using CT image-guided navigation. Neurosurg Focus 36:E9. https://doi.org/10.3171/2014.1.focus13521

    Article  PubMed  Google Scholar 

  40. Chen CH, Huang HM, Chen DC, Wu CY, Lee HC, Cho DY (2018) Cortical bone trajectory screws fixation in lumbar adjacent segment disease: a technique note with case series. J Clin Neurosci 48:224–228. https://doi.org/10.1016/j.jocn.2017.11.008

    Article  PubMed  Google Scholar 

  41. Pull ter Gunne AF, Cohen DB (2009) Incidence, prevalence, and analysis of risk factors for surgical site infection following adult spinal surgery. Spine (Phila Pa 1976) 34:1422–1428. https://doi.org/10.1097/brs.0b013e3181a03013

    Article  Google Scholar 

  42. Shousha M, Cirovic D, Boehm H (2015) Infection rate after minimally invasive noninstrumented spinal surgery based on 4350 procedures. Spine (Phila Pa 1976) 40:201–205. https://doi.org/10.1097/brs.0000000000000690

    Article  Google Scholar 

  43. Parker SL, Adogwa O, Witham TF, Aaronson OS, Cheng J, McGirt MJ (2011) Post-operative infection after minimally invasive versus open transforaminal lumbar interbody fusion (TLIF): literature review and cost analysis. Minim Invasive Neurosurg 54:33–37. https://doi.org/10.1055/s-0030-1269904

    Article  CAS  PubMed  Google Scholar 

  44. Smorgick Y, Baker KC, Herkowitz H, Montgomery D, Badve SA, Bachison C, Ericksen S, Fischgrund JS (2015) Predisposing factors for dural tear in patients undergoing lumbar spine surgery. J Neurosurg Spine 22:483–486. https://doi.org/10.3171/2015.1.SPINE13864

    Article  PubMed  Google Scholar 

  45. Takahashi Y, Sato T, Hyodo H, Kawamata T, Takahashi E, Miyatake N, Tokunaga M (2013) Incidental durotomy during lumbar spine surgery: risk factors and anatomic locations: clinical article. J Neurosurg Spine 18:165–169. https://doi.org/10.3171/2012.10.spine12271

    Article  PubMed  Google Scholar 

  46. Cheng K, Li J, Kong Q, Wang C, Ye N, Xia G (2015) Risk factors for surgical site infection in a teaching hospital: a prospective study of 1138 patients. Patient Prefer Adher 9:1171–1177. https://doi.org/10.2147/ppa.s86153

    Article  Google Scholar 

  47. Wang H, Zhang Z, Qiu G, Zhang J, Shen J (2018) Risk factors of perioperative complications for posterior spinal fusion in degenerative scoliosis patients: a retrospective study. BMC Musculoskelet Disord 19:242. https://doi.org/10.1186/s12891-018-2148-x

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang XN, Sun XY, Hai Y, Meng XL, Wang YS (2018) Incidence and risk factors for multiple medical complications in adult degenerative scoliosis long-level fusion. J Clin Neurosci 54:14–19. https://doi.org/10.1016/j.jocn.2018.04.070

    Article  PubMed  Google Scholar 

  49. Kim B, Hsu W, De Oliveira G, Saha S, Kim J (2014) Operative duration as an independent risk factor for postoperative complications in single-level lumbar fusion: an analysis of 4588 surgical cases. Spine 39:510–520

    Article  PubMed  Google Scholar 

  50. Phan K, Kim J, Capua J, Lee N, Kothari P, Dowdell J, Overley S, Guzman J, Cho S (2017) Impact of operation time on 30-day complications after adult spinal deformity surgery. Glob Spine J 7:664–671

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all the people who give the help for this study.

Funding

This work was supported by grants from Tianjin Natural Science Foundation of China (18JCYBJC28200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwei Sun.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., He, X. & Sun, T. Comparative clinical efficacy and safety of cortical bone trajectory screw fixation and traditional pedicle screw fixation in posterior lumbar fusion: a systematic review and meta-analysis. Eur Spine J 28, 1678–1689 (2019). https://doi.org/10.1007/s00586-019-05999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-019-05999-y

Keywords

Navigation