Skip to main content
Log in

Effectiveness of braces designed using computer-aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: a prospective randomized controlled trial

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Clinical assessment of immediate in-brace effect of braces designed using CAD/CAM and FEM vs. only CAD/CAM for conservative treatment of AIS, using a randomized blinded and controlled study design.

Methods

Forty AIS patients were prospectively recruited and randomized into two groups. For 19 patients (control group), the brace was designed using a scan of patient’s torso and a conventional CAD/CAM approach (CtrlBrace). For the 21 other patients (test group), the brace was additionally designed using finite element modeling (FEM) and 3D reconstructions of spine, rib cage and pelvis (NewBrace). The NewBrace design was simulated and iteratively optimized to maximize the correction and minimize the contact surface and material.

Results

Both groups had comparable age, sex, weight, height, curve type and severity. Scoliosis Research Society standardized criteria for bracing were followed. Average Cobb angle prior to bracing was 27° and 28° for main thoracic (MT) and lumbar (L) curves, respectively, for the control group, while it was 33° and 28° for the test group. CtrlBraces reduced MT and L curves by 8° (29 %) and 10° (40 %), respectively, compared to 14° (43 %) and 13° (46 %) for NewBraces, which were simulated with a difference inferior to 5°. NewBraces were 50 % thinner and had 20 % less covering surface than CtrlBraces.

Conclusion

Braces designed with CAD/CAM and 3D FEM simulation were more efficient and lighter than standard CAD/CAM TLSO’s at first immediate in-brace evaluation. These results suggest that long-term effect of bracing in AIS may be improved using this new platform for brace fabrication.

Trial registration

NCT02285621.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nachemson AL, Peterson LE (1995) Effectiveness of treatment with brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J Bone Joint Surg 77:815–822

    CAS  PubMed  Google Scholar 

  2. Trobisch P, Suess O, Schwab F (2010) Idiopathic scoliosis. Dtsch Ärztebl Int 107(49):875–883

    PubMed  PubMed Central  Google Scholar 

  3. Castro F (2003) Adolescent idiopathic scoliosis, bracing, and the Hueter-Volkmann principle. Spine 3:182–185

    Google Scholar 

  4. Negrini S, Atanasio S, Fusco C, Zaina F (2009) Effectiveness of complete conservative treatment for adolescent idiopathic scoliosis (bracing and exercises) based on SOSORT management criteria: results according to the SRS criteria for bracing studies-SOSORT Award 2009 Winner. Scoliosis 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  5. Negrini S, Aulisa AG, Aulisa L et al (2012) 2011 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis 7:1–35

    Article  Google Scholar 

  6. Weinstein SL, Dolan LA, Wright JG, Dobbs MB (2013) Effects of bracing in adolescents with idiopathic scoliosis. New Engl J Med 369(16):1512–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Landauer F, Wimmer C, Behensky H (2003) Estimating the final outcome of brace treatment for idiopathic thoracic scoliosis at 6-month follow-up. Pediatri Rehabil 6:201–207

    Article  Google Scholar 

  8. Clin J, Aubin CE, Sangole A, Labelle H, Parent S (2010) Correlation between immediate in-brace correction and biomechanical effectiveness of brace treatment in adolescent idiopathic scoliosis. Spine 35(18):1706–1713

    Article  PubMed  Google Scholar 

  9. Nault M, Parent S, Phan P, Roy-Beaudry M, Labelle H, Rivard M (2010) A modified Risser grading system predicts the curve acceleration phase of female adolescent idiopathic scoliosis. J Bone Joint Surg Am 92:1073–1081

    Article  PubMed  Google Scholar 

  10. Lusini M, Donzelli S, Minnella S, Zaina F, Negrini S (2010) Brace treatment is effective in idiopathic scoliosis over 45°: an observational prospective cohort controlled study. Spine J 14(9):1951–1956

    Article  Google Scholar 

  11. Brox JI, Lange JE, Gunderson RB, Steen H (2012) Good brace compliance reduced curve progression and surgical rates in patients with idiopathic scoliosis. Eur Spine J 21:1957–1963

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aulisa GO, Giordano M, Falciglia F et al (2014) Correlation between compliance and brace treatment in juvenile and adolescent idiopathic scoliosis: SOSORT 2014 award winner. Scoliosis 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wong MS (2011) Computer-aided design and computer-aided manufacture (CAD/CAM) system for construction of spinal orthosis for patients with adolescent idiopathic scoliosis. Physiother Theory Pract 27(1):74–79

    Article  CAS  PubMed  Google Scholar 

  14. Wong MS (2005) A comparison of treatment effectiveness between the CAD/CAM method and the manual method for managing adolescent idiopathic scoliosis. Prosthet Orthot Int 29(1):105–111

    Article  CAS  PubMed  Google Scholar 

  15. Desbiens-Blais F, Clin J, Parent S, Labelle H, Aubin CE (2012) New brace design combining CAD/CAM and biomechanical simulation for the treatment of adolescent idiopathic scoliosis. Clin Biomech 27:999–1005

    Article  Google Scholar 

  16. Cobetto N, Aubin CE, Clin J, Le May S, Desbiens-Blais F, Labelle H, Parent S (2014) Braces optimized with computer-assisted design and simulations are lighter, comfortable and more efficient than plaster-casted braces for the treatment of adolescent idiopathic scoliosis. Spine Deform 2(4):276–284

    Article  Google Scholar 

  17. Pazos V, Cheriet F, Dansereau J, Ronsky J, Zernicke RF, Labelle H (2007) Reliability of trunk shape measurements based on 3-D surface reconstructions. Eur Spine J 16:1882–1891

    Article  PubMed  PubMed Central  Google Scholar 

  18. Raux S, Kohler R, Garin C, Cunin V, Abelin-Genevois K (2014) Tridimensinal trunk surface acquisition for brace manufacturing in idiopathic scoliosis. Eur Spine J 4:S419–S423

    Article  Google Scholar 

  19. Aubin C, Descrimes JL, Dansereau J et al (1995) Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method. Ann Chir 49:749–761

    CAS  PubMed  Google Scholar 

  20. Gignac D, Aubin CE, Dansereau J, Labelle H (2000) Optimization method for 3D bracing correction of scoliosis using a finite element model. Eur Spine J 9:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wynarsky GT, Schultz AB (1991) Optimization of skeletal configuration: studies of scoliosis correction biomechanics. J Biomech 24(8):721–732

    Article  CAS  PubMed  Google Scholar 

  22. Perie D, Aubin CE, Lacroix M, Lafon Y, Labelle H (2004) Biomechanical modelling of orthotic treatment of the scoliotic spine including a detailed representation of the brace-torso interface. Med Biol Eng Compu 42:339–344

    Article  CAS  Google Scholar 

  23. Perie D, Aubin CE, Petit Y, Labelle H, Dansereau J (2004) Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis. Clin Biomech 19:190–195

    Article  Google Scholar 

  24. Clin J, Aubin CE, Labelle H (2007) Virtual prototyping of a brace design for the correction of scoliotic deformities. Med Biol Eng Compu 45:467–473

    Article  Google Scholar 

  25. Clin J, Aubin CE, Parent S, Labelle H (2011) Biomechanical modeling of brace treatment of scoliosis: effects of gravitational loads. Med Biol Eng Compu 49:743–753

    Article  Google Scholar 

  26. Richards BS, Bernstein RM, D’Amato CR, Thompson GH (2005) Standardization of criteria for adolescent idiopathic scoliosis brace studies: SRS Committee on Bracing and Nonoperative Management. Spine 30(18):2068–2075

    Article  PubMed  Google Scholar 

  27. Humbert L, de Guise JA, Aubert B, Godbout B, Skalli W (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31(6):681–687

    Article  CAS  PubMed  Google Scholar 

  28. Aubin CE, Dansereau J, De Guise JA, Labelle H (1996) A study of biomechanical coupling between spine and rib cage in the treatment by orthosis of scoliosis. Ann Chir 50:641–650

    CAS  PubMed  Google Scholar 

  29. Howard A, Wright JG, Hedden D (1998) A comparative study of TLSO, Charleston and Milwaukee braces for idiopathic scoliosis. Spine 23:2404–2411

    Article  CAS  PubMed  Google Scholar 

  30. Zhang M, Mak A (1999) In vivo friction properties of human skin. Prosthet Orthot Int 23:135–141

    CAS  PubMed  Google Scholar 

  31. Morrissy RT, Goldsmith GS, Hall EC, Kehl D, Cowie GH (1990) Measurement of the Cobb angle on radiographs of patients who have scoliosis. Evaluation of intrinsic error. J Bone Joint Surg Am 72(3):320–327

    CAS  PubMed  Google Scholar 

  32. Carman DL, Browne RH, Birch JG (1990) Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. J Bone Joint Surg Am 72(3):328–333

    CAS  PubMed  Google Scholar 

  33. Morton A, Riddle R, Buchanan R, Katz D, Birch J (2008) Accuracy in the prediction and estimation of adherence to bracewear before and during treatment of adolescent idiopathic scoliosis. J Pediatr Orthop 28(3):336–341

    Article  PubMed  Google Scholar 

  34. Donzelli S, Zaina F, Negrini S (2015) Compliance monitor for scoliosis braces in clinical practice. J Child Orthop (epub ahead of print)

  35. Weinstein SL, Dolan LA, Wright JG, Dobbs MB (2013) Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med 369(16):1512–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Katz DE, Durrani AA (2001) Factors that influence outcome in bracing large curves in patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 26(21):2354–2361

    Article  CAS  Google Scholar 

  37. Sattout A, Clin J, Cobetto N, Labelle H, Aubin CE (20165 Biomechanical assessment of Providence nighttime brace for the treatment of adolescent idiopathic scoliosis. Spine Deform (accepted 24 Dec 2015)

  38. Lebel DE, Al-Aubaidi Z, Shin EJ, Howard A, Zeller R (2013) Three dimensional analysis of brace biomechanical efficacy for patients with AIS. Eur Spine J 22(11):2445–2448

    Article  PubMed  PubMed Central  Google Scholar 

  39. Weiss HR, Kleban A (2015) Development of CAD/CAM based brace models for the treatment of patients with scoliosis-classification based approach versus finite element modelling. Asian Spine J 9(5):661–667

    Article  PubMed  PubMed Central  Google Scholar 

  40. Clin J, Aubin CE, Parent S, Labelle H (2010) A biomechanical study of the Charleston brace for the treatment of scoliosis. Spine (Phila Pa 1976) 35(19):E940–E947

    Article  Google Scholar 

Download references

Acknowledgments

Project funded by the Natural Sciences and Engineering Research Council of Canada (RGPIN 239148-11) and the Canadian Institutes of Health Research (MOP-119455). Special thanks to Marie-Chantal Bolduc and Benoit Bissonnette from Orthèse-Prothèse Rive-Sud who contributed to the design and fabrication of the braces, and delivery to the patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Labelle.

Ethics declarations

Conflict of interest

Research and development contract was obtained with Groupe Lagarrigue to develop and transfer a license of the simulation platform. Money was given to the university and the contract was not directly related to the presented RCT study. The RCT study presented in this paper was funded by a peer-reviewed grant from the Canadian Institutes of Health Research. The participating orthotists from Orthèse-Prothèse Rive-Sud received nothing of value to realize this study.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional ethical research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study and their parents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cobetto, N., Aubin, C.E., Parent, S. et al. Effectiveness of braces designed using computer-aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: a prospective randomized controlled trial. Eur Spine J 25, 3056–3064 (2016). https://doi.org/10.1007/s00586-016-4434-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4434-3

Keywords

Navigation