Skip to main content

Advertisement

Log in

MIS lateral spine surgery: a systematic literature review of complications, outcomes, and economics

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Background

Over the past decade, the minimally disruptive lateral transpsoas approach for lumbar interbody fusion (MI-LIF) is increasingly being used as an alternative to conventional surgical approaches. The purpose of this review was to evaluate four primary questions as they relate to MI-LIF: (1) Is there an anatomical justification for MI-LIF at L4–5? (2) What are the complication and outcome profiles of MI-LIF and are they acceptable with respect to conventional approaches? (3) Given technical and neuromonitoring differences between various MI-LIF procedures, are there any published clinical differences? And, (4) are modern minimally disruptive procedures (e.g., MI-LIF) economically viable?

Methods

Through a MEDLINE and Google Scholar search, a total of 237 articles that discussed MI-LIF were identified. Of those, topical areas included anatomy (22), biomechanics/testing (17), technical descriptions (11), case reports (40), complications (30), clinical and radiographic outcomes (43), deformity (23), trauma or thoracic applications (10), and review articles (41).

Results

In answer to the questions posed, (1) there is a high strength of evidence showing MI-LIF to be anatomically justified at all levels of the lumbar spine from L1–2 to L4–5. The evidence also supports the use of advanced neuromonitoring modalities. (2) There is moderate strength evidence in support of reproducible and reasonable complication, side effect, and outcome profiles following MI-LIF which may be technique dependent. (3) There is low-strength evidence that shows elevated neural complication rates in non-traditional (e.g., shallow-docking approaches and/or those without specialized neuromonitoring) MI-LIF, and (4) there is low- to moderate-strength evidence that modern minimally disruptive surgical approaches are cost-effective.

Conclusions

There is considerable published evidence to support MI-LIF in spinal fusion and advanced applications, though the results of some reports, especially concerning complications, vary greatly depending on technique and instrumentation used. Additional cost-effectiveness analyses would assist in fully understanding the long-term implications of MI-LIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pimenta L (2001) Lateral endoscopic transpsoas retroperitoneal approach for lumbar spine surgery. Presented at VIII Brazilian Spine Society Meeting, Belo Horizonte

    Google Scholar 

  2. Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 4:435–443

    Google Scholar 

  3. Penta M, Fraser RD (1997) Anterior lumbar interbody fusion. A minimum 10-year follow-up. Spine 20:2429–2434

    Google Scholar 

  4. Rajaraman V, Vingan R, Roth P, Heary RF, Conklin L, Jacobs GB (1999) Visceral and vascular complications resulting from anterior lumbar interbody fusion. J Neurosurg 1(Suppl):60–64

    Google Scholar 

  5. Sasso RC, Kenneth BJ, LeHuec JC (2003) Retrograde ejaculation after anterior lumbar interbody fusion: transperitoneal versus retroperitoneal exposure. Spine 10:1023–1026

    Google Scholar 

  6. Wood KB, Devine J, Fischer D, Dettori JR, Janssen M (2010) Vascular injury in elective anterior lumbosacral surgery. Spine 9(Suppl):S66–S75

    Google Scholar 

  7. Okuda S, Miyauchi A, Oda T, Haku T, Yamamoto T, Iwasaki M (2006) Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients. J Neurosurg Spine 4:304–309

    PubMed  Google Scholar 

  8. Rihn JA, Patel R, Makda J, Hong J, Anderson DG, Vaccaro AR, Hilibrand AS, Albert TJ (2009) Complications associated with single-level transforaminal lumbar interbody fusion. Spine J 8:623–629

    Google Scholar 

  9. Hardenbrook, MA, Miller, LE, Block, JE (2013) TranS1 VEO system: a novel psoas-sparing device for transpsoas lumbar interbody fusion. Med Devices (Auckl), pp 91–95

  10. Acosta FL Jr, Drazin D, Liu JC (2013) Supra-psoas shallow docking in lateral interbody fusion. Neurosurgery 1(Suppl Operative):ons48–ons51

  11. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O’Connell D, Oxman AD, Phillips B, Schunemann HJ, Edejer T, Varonen H, Vist GE, Williams JW Jr, Zaza S (2004) Grading quality of evidence and strength of recommendations. BMJ 7454:1490

    Google Scholar 

  12. Van Tulder M, Furlan A, Bombardier C, Bouter L (2003) Updated method guidelines for systematic reviews in the cochrane collaboration back review group. Spine 12:1290–1299

    Google Scholar 

  13. Wright JG, Swiontkowski MF, Heckman JD (2003) Introducing levels of evidence to The Journal. J Bone Joint Surg 1:1–3

    Google Scholar 

  14. Dettori JR, Norvell DC, Dekutoski M, Fisher C, Chapman JR (2010) Methods for the systematic reviews on patient safety during spine surgery. Spine 9(Suppl):S22–S27

    Google Scholar 

  15. Banagan K, Gelb D, Poelstra K, Ludwig S (2011) Anatomic mapping of lumbar nerve roots during a direct lateral transpsoas approach to the spine: a cadaveric study. Spine 11:E687–E691

    Google Scholar 

  16. Benglis DM, Vanni S, Levi AD (2009) An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine 2:139–144

    Google Scholar 

  17. Dakwar E, Vale FL, Uribe JS (2011) Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine 2:290–295

    Google Scholar 

  18. Dakwar E, Ahmadian A, Uribe JS (2012) The anatomical relationship of the diaphragm to the thoracolumbar junction during the minimally invasive lateral extracoelomic (retropleural/retroperitoneal) approach. J Neurosurg Spine 4:359–364

    Google Scholar 

  19. Davis TT, Bae HW, Mok JM, Rasouli A, Delamarter RB (2011) Lumbar plexus anatomy within the psoas muscle: implications for the transpsoas lateral approach to the L4–L5 disc. J Bone Joint Surg Am 16:1482–1487

    Google Scholar 

  20. Delasotta LA, Radcliff K, Sonagli MA, Miller L (2012) Aberrant iliac artery: far lateral lumbosacral surgical anatomy. Orthopedics 2:e294–e297

    Google Scholar 

  21. Deukmedjian AR, Le TV, Dakwar E, Martinez CR, Uribe JS (2012) Movement of abdominal structures on magnetic resonance imaging during positioning changes related to lateral lumbar spine surgery: a morphometric study: clinical article. J Neurosurg Spine 6:615–623

    Google Scholar 

  22. Guerin P, Obeid I, Gille O, Bourghli A, Luc S, Pointillart V, Cursolle JC, Vital JM (2011) Safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: a morphometric study. Surg Radiol Anat 8:665–671

    Google Scholar 

  23. Guerin P, Obeid I, Bourghli A, Masquefa T, Luc S, Gille O, Pointillart V, Vital JM (2012) The lumbosacral plexus: anatomic considerations for minimally invasive retroperitoneal transpsoas approach. Surg Radiol Anat 2:151–157

    Google Scholar 

  24. Hu WK, He SS, Zhang SC, Liu YB, Li M, Hou TS, Ma XL, Wang J (2011) An MRI study of psoas major and abdominal large vessels with respect to the X/DLIF approach. Eur Spine J 4:557–562

    CAS  Google Scholar 

  25. Kepler CK, Bogner EA, Herzog RJ, Huang RC (2011) Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J 4:550–556

    Google Scholar 

  26. Lu S, Chang S, Zhang YZ, Ding ZH, Xu XM, Xu YQ (2011) Clinical anatomy and 3D virtual reconstruction of the lumbar plexus with respect to lumbar surgery. BMC Musculoskelet Disord 12:76

    PubMed Central  PubMed  Google Scholar 

  27. Park DK, Lee MJ, Lin EL, Singh K, An HS, Phillips FM (2010) The relationship of intrapsoas nerves during a transpsoas approach to the lumbar spine: anatomic study. J Spinal Disord Tech 4:223–228

    Google Scholar 

  28. Regev GJ, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW (2009) Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine 12:1330–1335

    Google Scholar 

  29. Shirzadi A, Birch K, Drazin D, Liu JC, Acosta F Jr (2012) Direct lateral interbody fusion (DLIF) at the lumbosacral junction L5–S1. J Clin Neurosci 7:1022–1025

    Google Scholar 

  30. Smith WD, Youssef JA, Christian G, Serrano S, Hyde JA (2012) Lumbarized sacrum as a relative contraindication for lateral transpsoas interbody fusion at L5–6. J Spinal Disord Tech 5:285–291

    Google Scholar 

  31. Uribe JS, Arredondo N, Dakwar E, Vale FL (2010) Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine 2:260–266

    Google Scholar 

  32. Taher F, Hughes AP, Sama AA, Zeldin R, Schneider R, Holodny EI, Lebl DR, Fantini GA, Nguyen J, Cammisa FP, Girardi FP (2013) 2013 young investigator award winner: how safe is lateral lumbar interbody fusion for the surgeon? A prospective in vivo radiation exposure study. Spine 16:1386–1392

    Google Scholar 

  33. Baaj AA, Papadimitriou K, Amin AG, Kretzer RM, Wolinsky JP, Gokaslan ZL (2014) Surgical anatomy of the diaphragm in the anterolateral approach to the spine: a cadaveric study. J Spinal Disord Tech 4:220–223

    Google Scholar 

  34. Menezes CM, de Andrade LM, da Silva Herrero CF, Defino HL, Ferreira Junior MA, Rodgers WB, Nogueira-Barbosa MH (2014) Diffusion-weighted magnetic resonance (DW-MR) neurography of the lumbar plexus in the preoperative planning of lateral access lumbar surgery. Eur Spine J [Epub ahead of print]

  35. Voyadzis JM, Felbaum D, Rhee J (2014) The rising psoas sign: an analysis of preoperative imaging characteristics of aborted minimally invasive lateral interbody fusions at L4-5. J Neurosurg Spine 5:531–537

    Google Scholar 

  36. Yusof MI, Nadarajan E, Abdullah MS (2014) The morphometric study of L3–L4 and L4–L5 lumbar spine in Asian population using magnetic resonance imaging: feasibility analysis for transpsoas lumbar interbody fusion. Spine 14:E811–E816

    Google Scholar 

  37. Cappuccino A, Cornwall GB, Turner AW, Fogel GR, Duong HT, Kim KD, Brodke DS (2010) Biomechanical analysis and review of lateral lumbar fusion constructs. Spine 26(Suppl):S361–S367

    Google Scholar 

  38. Fontes RB, Traynelis VC (2013) Iliac crest osteotomy to enhance exposure of the L4–5 interspace in minimally invasive lateral transpsoas interbody fusion: a cadaveric feasibility study. J Neurosurg Spine 1:13–17

    Google Scholar 

  39. Kretzer RM, Molina C, Hu N, Umekoji H, Baaj AA, Serhan H, Cunningham BW (2013) A comparative biomechanical analysis of stand alone versus facet screw and pedicle screw augmented lateral interbody arthrodesis: an in vitro human cadaveric model. J Spinal Disord Tech [Epub ahead of print]

  40. Laws CJ, Coughlin DG, Lotz JC, Serhan HA, Hu SS (2012) Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach: an in vitro study. Spine 10:819–825

    Google Scholar 

  41. Marulanda GA, Nayak A, Murtagh R, Santoni BG, Billys JB, Castellvi AE (2013) A cadaveric radiographic analysis on the effect of extreme lateral interbody fusion cage placement with supplementary internal fixation on indirect spine decompression. J Spinal Disord Tech [Epub ahead of print]

  42. Nayak AN, Gutierrez S, Billys JB, Santoni BG, Castellvi AE (2013) Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages. Spine J 13:1331–1338

    PubMed  Google Scholar 

  43. Pekmezci M, McDonald E, Kennedy A, Dedini R, McClellan T, Ames C, Deviren V (2012) Can a novel rectangular footplate provide higher resistance to subsidence than circular footplates? An ex vivo biomechanical study. Spine 19:E1177–E1181

    Google Scholar 

  44. Pimenta L, Turner AW, Dooley ZA, Parikh RD, Peterson MD (2012) Biomechanics of lateral interbody spacers: going wider for going stiffer. Sci World J 381814

  45. Uribe JS, Smith DA, Dakwar E, Baaj AA, Mundis GM, Turner AW, Cornwall GB, Akbarnia BA (2012) Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers. J Neurosurg Spine 5:476–485

    Google Scholar 

  46. Webb JE, Regev GJ, Garfin SR, Kim CW (2010) Navigation-assisted fluoroscopy in minimally invasive direct lateral interbody fusion: a cadaveric study. SAS J 4:115–121

    PubMed Central  PubMed  Google Scholar 

  47. Deukmedjian AR, Manwaring J, Le TV, Turner AW, Uribe JS (2014) Corpectomy cage subsidence with rectangular versus round endcaps. J Clin Neurosci 9:1632–1636

    Google Scholar 

  48. Fogel GR, Parikh RD, Ryu SI, Turner AW (2014) Biomechanics of lateral lumbar interbody fusion constructs with lateral and posterior plate fixation: laboratory investigation. J Neurosurg Spine 3:291–297

    Google Scholar 

  49. Fogel GR, Turner AW, Dooley ZA, Cornwall GB (2014) Biomechanical stability of lateral interbody implants and supplemental fixation in a cadaveric degenerative spondylolisthesis model. Spine 19:E1138–E1146

    Google Scholar 

  50. O’Brien J, Haines C, Dooley ZA, Turner AW, Jackson D (2014) Femoral nerve strain at L4–L5 is minimized by hip flexion and increased by table break when performing lateral interbody fusion. Spine 1:33–38

    Google Scholar 

  51. Schreiber JJ, Hughes AP, Taher F, Girardi FP (2014) An association can be found between hounsfield units and success of lumbar spine fusion. HSS J 1:25–29

    Google Scholar 

  52. Straus D, Takagi I, O’Toole J (2015) Minimally invasive direct lateral approach to the thoracolumbar junction: cadaveric analysis and case illustrations. J Neurol Surg A Cent Eur Neurosurg 1:56–62

    Google Scholar 

  53. Tohmeh, AG, Isaacs, RE, Dooley, ZA, Turner, AWL (2015) Long construct pedicle screw reduction and residual forces are decreasing using a computer-assisted rod bending system. J Spine Neurosurg S2

  54. Cheng WK, Jadhav V, Palmer DK (2011) A novel modification for removal of the polyethylene core in artificial disc retrieval using a transpsoas minimally invasive technique. J Neurosurg Spine 4:466–469

    Google Scholar 

  55. Pimenta L, Diaz RC, Guerrero LG (2006) Charite lumbar artificial disc retrieval: use of a lateral minimally invasive technique. Technical note. J Neurosurg Spine 6:556–561

    Google Scholar 

  56. Regev GJ, Haloman S, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW (2010) Incidence and prevention of intervertebral cage overhang with minimally invasive lateral approach fusions. Spine 14:1406–1411

    Google Scholar 

  57. Uribe JS, Dakwar E, Cardona RF, Vale FL (2011) Minimally invasive lateral retropleural thoracolumbar approach: cadaveric feasibility study and report of 4 clinical cases. Neurosurgery 1(Suppl Operative):32–39

  58. Yson SC, Sembrano JN, Santos ER, Luna JT, Polly DW Jr (2014) Does prone re-positioning prior to posterior fixation produce greater lordosis in lateral lumbar interbody fusion (LLIF)? J Spinal Disord Tech 27:364–369

    PubMed  Google Scholar 

  59. Aghayev K, Vrionis FD (2013) Mini-open lateral retroperitoneal lumbar spine approach using psoas muscle retraction technique. Technical report and initial results on six patients. Eur Spine J 9:2113–2119

    Google Scholar 

  60. Drazin D, Liu JC, Acosta FL Jr (2013) CT navigated lateral interbody fusion. J Clin Neurosci 10:1438–1441

    Google Scholar 

  61. Quante M, Halm H (2015) Extreme lateral interbody fusion : indication, surgical technique, outcomes and specific complications. Orthopade [Epub ahead of print]

  62. Adkins DE, Sandhu FA, Voyadzis JM (2013) Minimally invasive lateral approach to the thoracolumbar junction for corpectomy. J Clin Neurosci 20:1289–1294

    PubMed  Google Scholar 

  63. Ahmadian A, Abel N, Uribe JS (2013) Functional recovery of severe obturator and femoral nerve injuries after lateral retroperitoneal transpsoas surgery. J Neurosurg Spine 4:409–414

    Google Scholar 

  64. Amin BY, Mummaneni PV, Ibrahim T, Zouzias A, Uribe J (2013) Four-level minimally invasive lateral interbody fusion for treatment of degenerative scoliosis. Neurosurg Focus 35:Video 10

    PubMed  Google Scholar 

  65. Anand N, Baron EM (2013) Urological injury as a complication of the transpsoas approach for discectomy and interbody fusion. J Neurosurg Spine 1:18–23

    Google Scholar 

  66. Berjano P, Lamartina C (2011) Minimally invasive lateral transpsoas approach with advanced neurophysiologic monitoring for lumbar interbody fusion. Eur Spine J 9:1584–1586

    Google Scholar 

  67. Berjano P, Damilano M, Lamartina C (2012) Sagittal alignment correction and reconstruction of lumbar post-traumatic kyphosis via MIS lateral approach. Eur Spine J 12:2718–2720

    Google Scholar 

  68. Brier-Jones JE, Palmer DK, Inceoglu S, Cheng WK (2011) Vertebral body fractures after transpsoas interbody fusion procedures. Spine J 11:1068–1072

    PubMed  Google Scholar 

  69. Daffner SD, Wang JC (2010) Migrated XLIF cage: case report and discussion of surgical technique. Orthopedics 7:518

    Google Scholar 

  70. Dakwar E, Smith WD, Malone KT, Uribe JS (2011) Minimally invasive lateral extracavitary resection of foraminal neurofibromas. J Clin Neurosci 11:1510–1512

    Google Scholar 

  71. Deukmedjian AR, Le TV, Baaj AA, Dakwar E, Smith DA, Uribe JS (2012) Anterior longitudinal ligament release using the minimally invasive lateral retroperitoneal transpsoas approach: a cadaveric feasibility study and report of 4 clinical cases. J Neurosurg Spine 6:530–539

    Google Scholar 

  72. Dua K, Kepler CK, Huang RC, Marchenko A (2010) Vertebral body fracture after anterolateral instrumentation and interbody fusion in two osteoporotic patients. Spine J 9:e11–e15

    Google Scholar 

  73. Eck JC (2011) Minimally invasive corpectomy and posterior stabilization for lumbar burst fracture. Spine J 9:904–908

    Google Scholar 

  74. Galan TV, Mohan V, Klineberg EO, Gupta MC, Roberto RF, Ellwitz JP (2012) Case report: incisional hernia as a complication of extreme lateral interbody fusion. Spine J 4:e1–e6

    Google Scholar 

  75. Ha KY, Kim YH, Seo JY, Bae SH (2013) Percutaneous posterior instrumentation followed by direct lateral interbody fusion for lumbar infectious spondylitis. J Spinal Disord Tech 3:E95–E100

    Google Scholar 

  76. Houten JK, Alexandre LC, Nasser R, Wollowick AL (2011) Nerve injury during the transpsoas approach for lumbar fusion. J Neurosurg Spine 3:280–284

    Google Scholar 

  77. Jahangiri FR, Sherman JH, Holmberg A, Louis R, Elias J, Vega-Bermudez F (2010) Protecting the genitofemoral nerve during direct/extreme lateral interbody fusion (DLIF/XLIF) procedures. Am J Electroneurodiagnostic Technol 4:321–335

    Google Scholar 

  78. Kanter AS, Gandhoke GS (2013) Lateral lumbar interbody fusion. Neurosurg Focus 35:Video 20

    PubMed  Google Scholar 

  79. Keshavarzi S, Park MS, Aryan HE, Newman CB, Amene CS, Gonda D, Taylor WR (2009) Minimally invasive thoracic corpectomy and anterior fusion in a patient with metastatic disease: case report and review of the literature. Minim Invasive Neurosurg 3:141–143

    Google Scholar 

  80. Madhok R, Kanter AS (2010) Extreme-lateral, minimally invasive, transpsoas approach for the treatment of far-lateral lumbar disc herniation. J Neurosurg Spine 4:347–350

    Google Scholar 

  81. Massey GM, Caputo AM, Michael KW, Isaacs RE, Brown CR (2013) Lumbar facet cyst resolution following anterior interbody fusion. J Clin Neurosci 20:1771–1773

    PubMed  Google Scholar 

  82. Murray MR, Weistroffer JK, Schafer MF (2012) Case report of an abscess developing at the site of a hematoma following a direct lateral interbody fusion. Spine J 7:e1–e4

    Google Scholar 

  83. Papanastassiou ID, Eleraky M, Vrionis FD (2011) Contralateral femoral nerve compression: an unrecognized complication after extreme lateral interbody fusion (XLIF). J Clin Neurosci 1:149–151

    Google Scholar 

  84. Petteys RJ, Sandhu FA (2013) Minimally invasive lateral retroperitoneal corpectomy for treatment of focal thoracolumbar kyphotic deformity: case report and review of the literature. J Neurol Surg A Cent Eur Neurosurg 75:305–309

    PubMed  Google Scholar 

  85. Santillan A, Patsalides A, Gobin YP (2010) Endovascular embolization of iatrogenic lumbar artery pseudoaneurysm following extreme lateral interbody fusion (XLIF). Vasc Endovascular Surg 7:601–603

    Google Scholar 

  86. Taher F, Lebl DR, Hughes AP, Girardi FP (2013) Contralateral psoas seroma after transpsoas lumbar interbody fusion with bone morphogenetic protein-2 implantation. Spine J 2:e1–e5

    Google Scholar 

  87. Ahmadian A, Uribe JS (2013) Mini-open lateral retro-pleural thoracic corpectomy for osteomyelitis. Neurosurg Focus  35:Video 17

    PubMed  Google Scholar 

  88. Amaral R, Marchi L, Oliveira L, Coutinho T, Pimenta L (2013) Acute lumbar burst fracture treated by minimally invasive lateral corpectomy. Case Rep Orthop 953897

  89. Assina R, Majmundar NJ, Herschman Y, Heary RF (2014) First report of major vascular injury due to lateral transpsoas approach leading to fatality. J Neurosurg Spine 5:794–798

    Google Scholar 

  90. Hughes AP, Taher F, Farshad M, Aichmair A (2014) Multiple myeloma exacerbation following utilization of bone morphogenetic protein-2 in lateral lumbar interbody fusion: a case report and review of the literature. Spine J 4:e13–e19

    Google Scholar 

  91. Madhavan K, Vanni S, Williams SK (2014) Direct lateral retroperitoneal approach for the surgical treatment of lumbar discitis and osteomyelitis. Neurosurg Focus 2:E5

    Google Scholar 

  92. Malham GM (2014) Minimally invasive direct lateral corpectomy for the treatment of a thoracolumbar fracture. J Neurol Surg A Cent Eur Neurosurg [Epub ahead of print]

  93. Morr S, Kanter AS (2013) Complex regional pain syndrome following lateral lumbar interbody fusion: case report. J Neurosurg Spine 4:502–506

    Google Scholar 

  94. Sandhu HK, Charlton-Ouw KM, Azizzadeh A, Estrera AL, Safi HJ (2013) Spinal screw penetration of the aorta. J Vasc Surg 6:1668–1670

    Google Scholar 

  95. Shepard M, Safain M, Burke SM, Hwang S, Kryzanski J, Riesenburger RI (2014) Lateral retroperitoneal transpsoas approach to the lumbar spine for the treatment of spondylodiscitis. Minim Invasive Ther Allied Technol 5:309–312

    Google Scholar 

  96. Staub BN, Holman PJ (2015) Lateral retroperitoneal transpsoas interbody fusion in a patient with achondroplastic dwarfism. J Neurosurg Spine 2:162–165

    Google Scholar 

  97. Tender GC, Serban D (2013) Genitofemoral nerve protection during the lateral retroperitoneal transpsoas approach. Neurosurgery 2 (Suppl Operative):ons192–ons196

  98. Tender GC (2014) Caudal vertebral body fractures following lateral interbody fusion in non-osteoporotic patients. Ochsner J 1:123–130

    Google Scholar 

  99. Woodall MN, Shakir B, Smitherman A, Choudhri H (2013) Technical note: resolution of spontaneous electromyographic discharge following disk-space distraction during lateral transpsoas interbody fusion. Int J Spine Surg 7:e39–e41

    PubMed Central  PubMed  Google Scholar 

  100. Youssef JA, Orndorff DG, Scott MA, Ebner RE, Knewitz AP (2014) Sterile seroma resulting from multilevel XLIF procedure as possible adverse effect of prophylactic vancomycin powder: a case report. Evid Based Spine Care J 2:127–133

    Google Scholar 

  101. Aichmair A, Fantini GA, Garvin S, Beckman J, Girardi FP (2015) Aortic perforation during lateral lumbar interbody fusion. J Spinal Disord Tech 2:71–75

    Google Scholar 

  102. Cahill KS, Martinez JL, Wang MY, Vanni S, Levi AD (2012) Motor nerve injuries following the minimally invasive lateral transpsoas approach. J Neurosurg Spine 3:227–231

    Google Scholar 

  103. Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY (2011) An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine 1:11–18

    Google Scholar 

  104. Dakwar E, Rifkin SI, Volcan IJ, Goodrich JA, Uribe JS (2011) Rhabdomyolysis and acute renal failure following minimally invasive spine surgery: report of 5 cases. J Neurosurg Spine 6:785–788

    Google Scholar 

  105. Dakwar E, Le TV, Baaj AA, Le AX, Smith WD, Akbarnia BA, Uribe JS (2011) Abdominal wall paresis as a complication of minimally invasive lateral transpsoas interbody fusion. Neurosurg Focus 4:E18

    Google Scholar 

  106. Knight RQ, Schwaegler P, Hanscom D, Roh J (2009) Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech 1:34–37

    Google Scholar 

  107. Le TV, Baaj AA, Dakwar E, Burkett CJ, Murray G, Smith DA, Uribe JS (2012) Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine 14:1268–1273

    Google Scholar 

  108. Le TV, Smith DA, Greenberg MS, Dakwar E, Baaj AA, Uribe JS (2012) Complications of lateral plating in the minimally invasive lateral transpsoas approach. J Neurosurg Spine 3:302–307

    Google Scholar 

  109. Le TV, Burkett CJ, Deukmedjian AR, Uribe JS (2013) Postoperative lumbar plexus injury after lumbar retroperitoneal transpsoas minimally invasive lateral interbody fusion. Spine 1:E13–E20

    Google Scholar 

  110. Lee YP, Regev GJ, Chan J, Zhang B, Taylor W, Kim CW, Garfin SR (2013) Evaluation of hip flexion strength following lateral lumbar interbody fusion. Spine J 13:1259–1262

    PubMed  Google Scholar 

  111. Lucio JC, VanConia RB, Deluzio KJ, Lehmen JA, Rodgers JA, Rodgers WB (2012) Economics of less invasive spinal surgery: an analysis of hospital cost differences between open and minimally invasive instrumented spinal fusion procedures during the perioperative period. Risk Manag Healthc Policy 5:65

    PubMed Central  PubMed  Google Scholar 

  112. Lykissas MG, Cho W, Aichmair A, Sama AA, Hughes AP, Lebl DR, Du JY, Cammisa FP, Girardi FP (2013) Is there any relation between the amount of curve correction and postoperative neurologic deficit or pain in patients undergoing standalone lateral lumbar interbody fusion? Spine 38:1656–1662

    PubMed  Google Scholar 

  113. Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L (2013) Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine 1:110–118

    Google Scholar 

  114. Moller DJ, Slimack NP, Acosta FL Jr, Koski TR, Fessler RG, Liu JC (2011) Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus 4:E4

    Google Scholar 

  115. Pumberger M, Hughes AP, Huang RR, Sama AA, Cammisa FP, Girardi FP (2012) Neurologic deficit following lateral lumbar interbody fusion. Eur Spine J 6:1192–1199

    Google Scholar 

  116. Rodgers WB, Cox CS, Gerber EJ (2010) Early complications of extreme lateral interbody fusion in the obese. J Spinal Disord Tech 6:393–397

    Google Scholar 

  117. Rodgers WB, Gerber EJ, Rodgers JA (2010) Lumbar fusion in octogenarians: the promise of minimally invasive surgery. Spine 26(Suppl):S355–S360

    Google Scholar 

  118. Rodgers WB, Gerber EJ, Patterson J (2011) Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine 1:26–32

    Google Scholar 

  119. Sofianos DA, Briseno MR, Abrams J, Patel AA (2012) Complications of the lateral transpsoas approach for lumbar interbody arthrodesis: a case series and literature review. Clin Orthop Relat Res 6:1621–1632

    Google Scholar 

  120. Tohmeh AG, Rodgers WB, Peterson MD (2011) Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine 1:31–37

    Google Scholar 

  121. Aichmair A, Lykissas MG, Girardi FP, Sama AA, Lebl DR, Taher F, Cammisa FP, Hughes AP (2013) An institutional six-year trend analysis of the neurological outcome after lateral lumbar interbody fusion: a 6-year trend analysis of a single institution. Spine 23:E1483–E1490

    Google Scholar 

  122. Al Maaieh MA, Du JY, Aichmair A, Huang RC, Hughes AP, Cammisa FP, Girardi FP, Sama AA (2014) Multivariate analysis on risk factors for postoperative ileus after lateral lumbar interbody fusion. Spine 8:688–694

    Google Scholar 

  123. Berjano P, Bassani R, Casero G, Sinigaglia A, Cecchinato R, Lamartina C (2013) Failures and revisions in surgery for sagittal imbalance: analysis of factors influencing failure. Eur Spine J 22:S853–S858

    PubMed  Google Scholar 

  124. Cheng I, Briseno MR, Arrigo RT, Bains N, Ravi S, Tran A (2015) Outcomes of two different techniques using the lateral approach for lumbar interbody arthrodesis. Glob Spine J [Epub ahead of print]

  125. Du JY, Aichmair A, Kueper J, Lam C, Nguyen JT, Cammisa FP, Lebl DR (2014) Incidental durotomy during spinal surgery: a multivariate analysis for risk factors. Spine 22:E1339–E1345

    Google Scholar 

  126. Kueper J, Fantini GA, Walker BR, Aichmair A, Hughes AP (2015) Incidence of vascular complications during lateral lumbar interbody fusion: an examination of the mini-open access technique. Eur Spine J [Epub ahead of print]

  127. Lykissas MG, Aichmair A, Hughes AP, Sama AA, Lebl DR, Taher F, Du JY, Cammisa FP, Girardi FP (2014) Nerve injury after lateral lumbar interbody fusion: a review of 919 treated levels with identification of risk factors. Spine J 5:749–758

    Google Scholar 

  128. Lykissas MG, Aichmair A, Sama AA, Hughes AP, Lebl DR, Cammisa FP, Girardi FP (2014) Nerve injury and recovery after lateral lumbar interbody fusion with and without bone morphogenetic protein-2 augmentation: a cohort-controlled study. Spine J 2:217–224

    Google Scholar 

  129. Nemani VM, Aichmair A, Taher F, Lebl DR, Hughes AP, Sama AA, Cammisa FP, Girardi FP (2014) Rate of revision surgery after stand-alone lateral lumbar interbody fusion for lumbar spinal stenosis. Spine 5:E326–E331

    Google Scholar 

  130. Taher F, Hughes AP, Lebl DR, Sama AA, Pumberger M, Aichmair A, Huang RC, Cammisa FP, Girardi FP (2013) Contralateral motor deficits after lateral lumbar interbody fusion. Spine 22:1959–1963

    Google Scholar 

  131. Uribe JS, Deukmedjian AR, Mummaneni PV, Fu KM, Mundis GM Jr, Okonkwo DO, Kanter AS, Eastlack R, Wang MY, Anand N, Fessler RG, La MF, Park P, Lafage V, Deviren V, Bess S, Shaffrey CI (2014) Complications in adult spinal deformity surgery: an analysis of minimally invasive, hybrid, and open surgical techniques. Neurosurg Focus 5:E15

    Google Scholar 

  132. Acosta FL, Liu J, Slimack N, Moller D, Fessler R, Koski T (2011) Changes in coronal and sagittal plane alignment following minimally invasive direct lateral interbody fusion for the treatment of degenerative lumbar disease in adults: a radiographic study. J Neurosurg Spine 1:92–96

    Google Scholar 

  133. Ahmadian A, Verma S, Mundis GM Jr, Oskouian RJ Jr, Smith DA, Uribe JS (2013) Minimally invasive lateral retroperitoneal transpsoas interbody fusion for L4–5 spondylolisthesis: clinical outcomes. J Neurosurg Spine 19:314–320

    PubMed  Google Scholar 

  134. Benglis DM, Elhammady MS, Levi AD, Vanni S (2008) Minimally invasive anterolateral approaches for the treatment of back pain and adult degenerative deformity. Neurosurgery 3(Suppl):191–196

    Google Scholar 

  135. Berjano P, Balsano M, Buric J, Petruzzi M, Lamartina C (2012) Direct lateral access lumbar and thoracolumbar fusion: preliminary results. Eur Spine J 21:S37–S42

    PubMed  Google Scholar 

  136. Elowitz EH, Yanni DS, Chwajol M, Starke RM, Perin NI (2011) Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg 5–6:201–206

    Google Scholar 

  137. Hyde J, Seits M (2012) Clinical experience, outcomes, and learning curve following XLIF for lumbar degenerative conditions. World Spinal Column J 1:21–26

    Google Scholar 

  138. Johnson RD, Valore A, Villaminar A, Comisso M, Balsano M (2013) Pelvic parameters of sagittal balance in extreme lateral interbody fusion for degenerative lumbar disc disease. J Clin Neurosci 4:576–581

    Google Scholar 

  139. Karikari IO, Nimjee SM, Hardin CA, Hughes BD, Hodges TR, Mehta AI, Choi J, Brown CR, Isaacs RE (2011) Extreme lateral interbody fusion approach for isolated thoracic and thoracolumbar spine diseases: initial clinical experience and early outcomes. J Spinal Disord Tech 6:368–375

    Google Scholar 

  140. Kepler CK, Sharma AK, Huang RC (2011) Lateral transpsoas interbody fusion (LTIF) with plate fixation and unilateral pedicle screws: a preliminary report. J Spinal Disord Tech 6:363–367

    Google Scholar 

  141. Kepler CK, Sharma AK, Huang RC, Meredith DS, Girardi FP, Cammisa FP Jr, Sama AA (2012) Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg Spine 4:329–333

    Google Scholar 

  142. Kepler CK, Huang RC, Sharma AK, Meredith DS, Metitiri O, Sama AA, Girardi FP, Cammisa FP (2012) Factors influencing segmental lumbar lordosis after lateral transpsoas interbody fusion. Orthop Surg 2:71–75

    Google Scholar 

  143. Kotwal S, Kawaguchi S, Lebl D, Hughes A, Huang R, Sama A, Cammisa F, Girardi F (2012) Minimally invasive lateral lumbar interbody fusion: clinical and radiographic outcome at a minimum 2-year follow-up. J Spinal Disord Tech [Epub ahead of print]

  144. Le TV, Vivas AC, Dakwar E, Baaj AA, Uribe JS (2012) The effect of the retroperitoneal transpsoas minimally invasive lateral interbody fusion on segmental and regional lumbar lordosis. Sci World J 516706

  145. Malham GM, Ellis NJ, Parker RM, Seex KA (2012) Clinical outcome and fusion rates after the first 30 extreme lateral interbody fusions. Sci World J 246989

  146. Marchi L, Oliveira L, Amaral R, Castro C, Coutinho T, Coutinho E, Pimenta L (2012) Lateral interbody fusion for treatment of discogenic low back pain: minimally invasive surgical techniques. Adv Orthop 282068

  147. Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L (2012) Stand-alone lateral interbody fusion for the treatment of low-grade degenerative spondylolisthesis. Sci World J 456346

  148. Nagineni VV, James AR, Alimi M, Hofstetter C, Shin BJ, Njoku I Jr, Tsiouris AJ, Hartl R (2012) Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures. Spine 20:E1264–E1272

    Google Scholar 

  149. Oliveira L, Marchi L, Coutinho E, Abdala N, Pimenta L (2010) The use of rh-BMP2 in Standalone eXtreme lateral interbody fusion (XLIF®): clinical and radiological results after 24 months follow-up. World Spinal Column J 1:19–25

    Google Scholar 

  150. Oliveira L, Marchi L, Coutinho E, Pimenta L (2010) A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine 26(Suppl):S331–S337

    Google Scholar 

  151. Ozgur BM, Agarwal V, Nail E, Pimenta L (2010) Two-year clinical and radiographic success of minimally invasive lateral transpsoas approach for the treatment of degenerative lumbar conditions. SAS J 2:41–46

    Google Scholar 

  152. Pimenta L, Marchi L, Oliveira L, Coutinho E, Amaral R (2013) A prospective, randomized, controlled trial comparing radiographic and clinical outcomes between stand-alone lateral interbody lumbar fusion with either silicate calcium phosphate or rh-BMP2. J Neurol Surg A Cent Eur Neurosurg 76:343–350

    Google Scholar 

  153. Rodgers JA, Gerber EJ, Lehmen JA, Rodgers WB (2013) Clinical and radiographic outcome in less invasive lumbar fusion: XLIF at two year follow-up. J Spine Neurosurg 3:1–6

    Google Scholar 

  154. Rodgers WB, Cox CS, Gerber EJ (2007) Experience and early results with a minimally invasive technique for anterior column support through eXtreme Lateral Interbody Fusion (XLIF). US Musculoskelet Rev 28–32

  155. Rodgers WB, Cox CS, Gerber EJ (2009) Minimally invasive treatment (XLIF) of adjacent segment disease after prior lumbar fusions. Internet J Minim Invasive Spinal Technol 3

  156. Rodgers WB, Gerber EJ, Patterson JR (2010) Fusion after minimally disruptive anterior lumbar interbody fusion: analysis of extreme lateral interbody fusion by computed tomography. SAS J 2:63–66

    Google Scholar 

  157. Rodgers WB, Gerber EJ, Rodgers JA (2012) Clinical and radiographic outcomes of extreme lateral approach to interbody fusion with beta-tricalcium phosphate and hydroxyapatite composite for lumbar degenerative conditions. Int J Spine Surg 24–28

  158. Rodgers WB, Lehmen JA, Gerber EJ, Rodgers JA (2012) Grade 2 spondylolisthesis at L4–5 treated by XLIF: safety and midterm results in the “worst case scenario”. Sci World J 356712

  159. Sharma AK, Kepler CK, Girardi FP, Cammisa FP, Huang RC, Sama AA (2011) Lateral lumbar interbody fusion: clinical and radiographic outcomes at 1 year: a preliminary report. J Spinal Disord Tech 4:242–250

    Google Scholar 

  160. Smith WD, Christian G, Serrano S, Malone KT (2012) A comparison of perioperative charges and outcome between open and mini-open approaches for anterior lumbar discectomy and fusion. J Clin Neurosci 5:673–680

    Google Scholar 

  161. Tohmeh AG, Watson B, Tohmeh M, Zielinski XJ (2012) Allograft cellular bone matrix in extreme lateral interbody fusion: preliminary radiographic and clinical outcomes. Sci World J 263637

  162. Tohmeh AG, Khorsand D, Watson B, Zielinski X (2014) Radiographical and clinical evaluation of extreme lateral interbody fusion: effects of cage size and instrumentation type with a minimum of 1-year follow-up. Spine 26:E1582–E1591

    Google Scholar 

  163. Voyadzis JM, Anaizi AN (2013) Minimally invasive lumbar transfacet screw fixation in the lateral decubitus position after extreme lateral interbody fusion: a technique and feasibility study. J Spinal Disord Tech 2:98–106

    Google Scholar 

  164. Watkins RG, Hanna R, Chang D, Watkins RG III (2014) Sagittal alignment after lumbar interbody fusion: comparing anterior, lateral, and transforaminal approaches. J Spinal Disord Tech 27:253–256

    PubMed  Google Scholar 

  165. Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, Chotikul L (2010) Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine 26(Suppl):S302–S311

    Google Scholar 

  166. Ahmadian A, Bach K, Bolinger B, Malham GM, Okonkwo DO, Kanter AS, Uribe JS (2015) Stand-alone minimally invasive lateral lumbar interbody fusion: Multicenter clinical outcomes. J Clin Neurosci [Epub ahead of print]

  167. Alimi M, Hofstetter CP, Cong GT, Tsiouris AJ, James AR, Paulo D, Elowitz E, Hartl R (2014) Radiological and clinical outcomes following extreme lateral interbody fusion. J Neurosurg Spine 6:623–635

    Google Scholar 

  168. Castellvi AE, Nienke TW, Marulanda GA, Murtagh RD, Santoni BG (2014) Indirect decompression of lumbar stenosis with transpsoas interbody cages and percutaneous posterior instrumentation. Clin Orthop Relat Res 6:1784–1791

    Google Scholar 

  169. Formica M, Berjano P, Cavagnaro L, Zanirato A, Piazzolla A, Formica C (2014) Extreme lateral approach to the spine in degenerative and post traumatic lumbar diseases: selection process, results and complications. Eur Spine J 684–692

  170. Gates TA, Vasudevan RR, Miller KJ, Stamatopoulou V, Mindea SA (2014) A novel computer algorithm allows for volumetric and cross-sectional area analysis of indirect decompression following transpsoas lumbar arthrodesis despite variations in MRI technique. J Clin Neurosci 3:499–502

    Google Scholar 

  171. Malham GM, Parker RM, Goss B, Blecher CM, Ballok ZE (2014) Indirect foraminal decompression is independent of metabolically active facet arthropathy in extreme lateral interbody fusion. Spine 22:E1303–E1310

    Google Scholar 

  172. Oliveira DA, Fernandez JS, Falcon RS, Menezes CM (2014) Fusion via transpsoas lateral approach: considerations and initial results. Columna 3:214–218

    Google Scholar 

  173. Verla T, Adogwa O, Fatemi P, Martin JR, Gottfried ON, Cheng J, Isaacs RE (2015) Clinical implication of complications on patient perceived health status following spinal fusion surgery. J Clin Neurosci 2:342–345

    Google Scholar 

  174. Wang MY, Vasudevan R, Mindea SA (2014) Minimally invasive lateral interbody fusion for the treatment of rostral adjacent-segment lumbar degenerative stenosis without supplemental pedicle screw fixation. J Neurosurg Spine 6:861–866

    Google Scholar 

  175. Akbarnia BA, Mundis GM Jr, Moazzaz P, Kabirian N, Bagheri R, Eastlack RK, Pawelek JB (2014) Anterior column realignment (ACR) For focal kyphotic spinal deformity using a lateral transpsoas approach and all release. J Spinal Disord Tech 27:29–39

    PubMed  Google Scholar 

  176. Anand N, Baron EM, Thaiyananthan G, Khalsa K, Goldstein TB (2008) Minimally invasive multilevel percutaneous correction and fusion for adult lumbar degenerative scoliosis: a technique and feasibility study. J Spinal Disord Tech 7:459–467

    Google Scholar 

  177. Anand N, Rosemann R, Khalsa B, Baron EM (2010) Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg Focus 3:E6

    Google Scholar 

  178. Anand N, Baron EM, Khandehroo B, Kahwaty S (2013) Long term 2 to 5 year clinical and functional outcomes of minimally invasive surgery (MIS) for adult scoliosis. Spine 38:1566–1575

    PubMed  Google Scholar 

  179. Caputo AM, Michael KW, Chapman TM Jr., Massey GM, Howes CR, Isaacs RE, Brown CR (2012) Clinical outcomes of extreme lateral interbody fusion in the treatment of adult degenerative scoliosis. Sci World J 680643

  180. Dakwar E, Cardona RF, Smith DA, Uribe JS (2010) Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus 3:E8

    Google Scholar 

  181. Deukmedjian AR, Dakwar E, Ahmadian A, Smith DA, Uribe JS (2012) Early outcomes of minimally invasive anterior longitudinal ligament release for correction of sagittal imbalance in patients with adult spinal deformity. Sci World J 789698

  182. Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM (2010) A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine 26(Suppl):S322–S330

    Google Scholar 

  183. Marchi L, Oliveira L, Amaral R, Castro C, Coutinho T, Coutinho E, Pimenta L (2012) Anterior elongation as a minimally invasive alternative for sagittal imbalance-a case series. HSS J 2:122–127

    Google Scholar 

  184. McAfee PC, Shucosky E, Chotikul L, Salari B, Chen L, Jerrems D (2013) Multilevel extreme lateral interbody fusion (XLIF) and osteotomies for 3-dimensional severe deformity: 25 consecutive cases. Int J Spine Surg 7:e8–e19

    PubMed Central  PubMed  Google Scholar 

  185. Phillips FM, Isaacs RE, Rodgers WB, Khajavi K, Tohmeh AG, Deviren V, Peterson MD, Hyde J, Kurd M (2013) Adult degenerative scoliosis treated with XLIF: clinical and radiographic results of a prospective multi-center study with 24-month follow-up. Spine 38:1853–1861

    PubMed  Google Scholar 

  186. Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS (2010) Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus 3:E7

    Google Scholar 

  187. Wang MY, Mummaneni PV (2010) Minimally invasive surgery for thoracolumbar spinal deformity: initial clinical experience with clinical and radiographic outcomes. Neurosurg Focus 3:E9

    Google Scholar 

  188. Berjano P, Aebi M (2015) Pedicle subtraction osteotomies (PSO) in the lumbar spine for sagittal deformities. Eur Spine J 49–57. doi:10.1007/s00586-014-3670-7

  189. Caputo AM, Michael KW, Chapman TM, Jennings JM, Hubbard EW, Isaacs RE, Brown CR (2013) Extreme lateral interbody fusion for the treatment of adult degenerative scoliosis. J Clin Neurosci 11:1558–1563

    Google Scholar 

  190. Castro C, Oliveira L, Amaral R, Marchi L, Pimenta L (2014) Is the lateral transpsoas approach feasible for the treatment of adult degenerative scoliosis? Clin Orthop Relat Res 6:1776–1783

    Google Scholar 

  191. Haque RM, Mundis GM Jr, Ahmed Y, El Ahmadieh TY, Wang MY, Mummaneni PV, Uribe JS, Okonkwo DO, Eastlack RK, Anand N, Kanter AS, La MF, Akbarnia BA, Park P, Lafage V, Terran JS, Shaffrey CI, Klineberg E, Deviren V, Fessler RG (2014) Comparison of radiographic results after minimally invasive, hybrid, and open surgery for adult spinal deformity: a multicenter study of 184 patients. Neurosurg Focus 5:E13

    Google Scholar 

  192. Khajavi K, Shen AY (2014) Two-year radiographic and clinical outcomes of a minimally invasive, lateral, transpsoas approach for anterior lumbar interbody fusion in the treatment of adult degenerative scoliosis. Eur Spine J 6:1215–1223

    Google Scholar 

  193. Manwaring JC, Bach K, Ahmadian AA, Deukmedjian AR, Smith DA, Uribe JS (2014) Management of sagittal balance in adult spinal deformity with minimally invasive anterolateral lumbar interbody fusion: a preliminary radiographic study. J Neurosurg Spine 5:515–522

    Google Scholar 

  194. Park P, Wang MY, Lafage V, Nguyen S, Ziewacz J, Okonkwo DO, Uribe JS, Eastlack RK, Anand N, Haque R, Fessler RG, Kanter AS, Deviren V, La MF, Smith JS, Shaffrey CI, Mundis GM Jr., Mummaneni PV (2015) Comparison of two minimally invasive surgery strategies to treat adult spinal deformity. J Neurosurg Spine [Epub ahead of print]

  195. Sciubba DM, Scheer JK, Yurter A, Smith JS, Lafage V, Klineberg E, Gupta M, Eastlack R, Mundis GM, Protopsaltis TS, Blaskiewicz D, Kim HJ, Koski T, Kebaish K, Shaffrey CI, Bess S, Hart RA, Schwab F, Ames CP (2015) Patients with spinal deformity over the age of 75: a retrospective analysis of operative versus non-operative management. Eur Spine J [Epub ahead of print]

  196. Tempel ZJ, Gandhoke GS, Bonfield CM, Okonkwo DO, Kanter AS (2014) Radiographic and clinical outcomes following combined lateral lumbar interbody fusion and posterior segmental stabilization in patients with adult degenerative scoliosis. Neurosurg Focus 5:E11

    Google Scholar 

  197. Wang MY, Mummaneni PV, Fu KM, Anand N, Okonkwo DO, Kanter AS, La MF, Fessler R, Uribe J, Shaffrey CI, Lafage V, Haque RM, Deviren V, Mundis GM Jr (2014) Less invasive surgery for treating adult spinal deformities: ceiling effects for deformity correction with 3 different techniques. Neurosurg Focus 5:E12

    Google Scholar 

  198. Anand N, Baron EM (2013) Minimally invasive approaches for the correction of adult spinal deformity. Eur Spine J 22:232–241

    PubMed Central  Google Scholar 

  199. Bach K, Ahmadian A, Deukmedjian A, Uribe JS (2014) Minimally invasive surgical techniques in adult degenerative spinal deformity: a systematic review. Clin Orthop Relat Res 6:1749–1761

    Google Scholar 

  200. Banczerowski P, Czigleczki G, Papp Z, Veres R, Rappaport HZ, Vajda J (2015) Minimally invasive spine surgery: systematic review. Neurosurg Rev 1:11–26

    Google Scholar 

  201. Barbagallo GM, Albanese V, Raich AL, Dettori JR, Sherry N, Balsano M (2014) Lumbar lateral interbody fusion (LLIF): comparative effectiveness and safety versus PLIF/TLIF and predictive factors affecting LLIF Outcome. Evid Based Spine Care J 1:28–37

    Google Scholar 

  202. Barrey C, Darnis A (2015) Current strategies for the restoration of adequate lordosis during lumbar fusion. World J Orthop 1:117–126

    Google Scholar 

  203. Bina RW, Zoccali C, Skoch J, Baaj AA (2015) Surgical anatomy of the minimally invasive lateral lumbar approach. J Clin Neurosci 3:456–459

    Google Scholar 

  204. Costanzo G, Zoccali C, Maykowski P, Walter CM, Skoch J, Baaj AA (2014) The role of minimally invasive lateral lumbar interbody fusion in sagittal balance correction and spinal deformity. Eur Spine J 699–704. doi:10.1007/s00586-014-3561-y

  205. Dahdaleh NS, Smith ZA, Snyder LA, Graham RB, Fessler RG, Koski TR (2014) Lateral transpsoas lumbar interbody fusion: outcomes and deformity correction. Neurosurg Clin N Am 2:353–360

    Google Scholar 

  206. Dangelmajer S, Zadnik PL, Rodriguez ST, Gokaslan ZL, Sciubba DM (2014) Minimally invasive spine surgery for adult degenerative lumbar scoliosis. Neurosurg Focus 5:E7

    Google Scholar 

  207. Graham RB, Wong AP, Liu JC (2014) Minimally invasive lateral transpsoas approach to the lumbar spine: pitfalls and complication avoidance. Neurosurg Clin N Am 2:219–231

    Google Scholar 

  208. He L, Dong J, Liu B, Chen R, Feng F, Rong L (2014) A MRI study of lumbar plexus in patients with degenerative lumbar scoliosis after extreme lateral interbody fusion. Zhonghua Yi Xue Za Zhi 3:178–181

    Google Scholar 

  209. Koreckij T, Park DK, Fischgrund J (2014) Minimally invasive spine surgery in the treatment of thoracolumbar and lumbar spine trauma. Neurosurg Focus 1:E11

    Google Scholar 

  210. Lykissas MG, Aichmair A (2013) Current concepts on spinal arthrodesis in degenerative disorders of the lumbar spine. World J Clin Cases 1:4–12

    PubMed Central  PubMed  Google Scholar 

  211. Mummaneni PV, Shaffrey CI, Lenke LG, Park P, Wang MY, La MF, Smith JS, Mundis GM Jr, Okonkwo DO, Moal B, Fessler RG, Anand N, Uribe JS, Kanter AS, Akbarnia B, Fu KM (2014) The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery. Neurosurg Focus 5:E6

    Google Scholar 

  212. Omidi-Kashani F, Hasankhani EG, Ashjazadeh A (2014) Lumbar spinal stenosis: who should be fused? An updated review. Asian Spine J 4:521–530

    Google Scholar 

  213. Palejwala SK, Sheen WA, Walter CM, Dunn JH, Baaj AA (2014) Minimally invasive lateral transpsoas interbody fusion using a stand-alone construct for the treatment of adjacent segment disease of the lumbar spine: review of the literature and report of three cases. Clin Neurol Neurosurg 124:90–96

    PubMed  Google Scholar 

  214. Park MS, Deukmedjian AR, Uribe JS (2014) Minimally invasive anterolateral corpectomy for spinal tumors. Neurosurg Clin N Am 2:317–325

    Google Scholar 

  215. Regan C, Kang JD (2013) The role of the minimally invasive extreme lateral interbody fusion procedure for complex spinal reconstruction. Oper tech Orthop 23:28–32

    Google Scholar 

  216. Skovrlj B, Gilligan J, Cutler HS, Qureshi SA (2015) Minimally invasive procedures on the lumbar spine. World J Clin Cases 1:1–9

    Google Scholar 

  217. Yoshihara H, Yoneoka D (2015) National trends in the surgical treatment for lumbar degenerative disc disease: United States, 2000 to 2009. Spine J 2:265–271

    Google Scholar 

  218. Baaj AA, Dakwar E, Le TV, Smith DA, Ramos E, Smith WD, Uribe JS (2012) Complications of the mini-open anterolateral approach to the thoracolumbar spine. J Clin Neurosci 9:1265–1267

    Google Scholar 

  219. Deviren V, Kuelling FA, Poulter G, Pekmezci M (2011) Minimal invasive anterolateral transthoracic transpleural approach: a novel technique for thoracic disc herniation. A review of the literature, description of a new surgical technique and experience with first 12 consecutive patients. J Spinal Disord Tech 5:E40–E48

    Google Scholar 

  220. Kasliwal MK, Deutsch H (2011) Minimally invasive retropleural approach for central thoracic disc herniation. Minim Invasive Neurosurg 4:167–171

    Google Scholar 

  221. Khan SN, Cha T, Hoskins JA, Pelton M, Singh K (2012) Minimally invasive thoracolumbar corpectomy and reconstruction. Orthopedics 1:e74–e79

    Google Scholar 

  222. Nacar OA, Ulu MO, Pekmezci M, Deviren V (2013) Surgical treatment of thoracic disc disease via minimally invasive lateral transthoracic trans/retropleural approach: analysis of 33 patients. Neurosurg Rev 3:455–465

    Google Scholar 

  223. Smith WD, Dakwar E, Le TV, Christian G, Serrano S, Uribe JS (2010) Minimally invasive surgery for traumatic spinal pathologies: a mini-open, lateral approach in the thoracic and lumbar spine. Spine 26(Suppl):S338–S346

    Google Scholar 

  224. Uribe JS, Dakwar E, Le TV, Christian G, Serrano S, Smith WD (2010) Minimally invasive surgery treatment for thoracic spine tumor removal: a mini-open, lateral approach. Spine 26(Suppl):S347–S354

    Google Scholar 

  225. Uribe JS, Smith WD, Pimenta L, Hartl R, Dakwar E, Modhia UM, Pollock GA, Nagineni V, Smith R, Christian G, Oliveira L, Marchi L, Deviren V (2012) Minimally invasive lateral approach for symptomatic thoracic disc herniation: initial multicenter clinical experience. J Neurosurg Spine 3:264–279

    Google Scholar 

  226. Berjano P, Garbossa D, Damilano M, Pejrona M, Bassani R, Doria C (2014) Transthoracic lateral retropleural minimally invasive microdiscectomy for T9-T10 disc herniation. Eur Spine J 6:1376–1378

    Google Scholar 

  227. Meredith DS, Kepler CK, Huang RC, Hegde VV (2013) Extreme lateral interbody fusion (XLIF) in the thoracic and thoracolumbar spine: technical report and early outcomes. HSS J 1:25–31

    Google Scholar 

  228. Acosta FL Jr, Aryan HE, Ames CP (2005) Emerging directions in motion preservation spinal surgery. Neurosurg Clin N Am 4:665–669

    Google Scholar 

  229. Ahmadian A, Deukmedjian AR, Abel N, Dakwar E, Uribe JS (2013) Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization. J Neurosurg Spine 3:289–297

    Google Scholar 

  230. Allen RT, Garfin SR (2010) The economics of minimally invasive spine surgery: the value perspective. Spine 26(Suppl):S375–S382

    Google Scholar 

  231. Arnold PM, Anderson KK, McGuire RA Jr (2012) The lateral transpsoas approach to the lumbar and thoracic spine: a review. Surg Neurol Int Suppl 3:S198–S215

    Google Scholar 

  232. Berjano P, Lamartina C (2013) Far lateral approaches (XLIF) in adult scoliosis. Eur Spine J S242–S253

  233. Billinghurst J, Akbarnia BA (2009) Extreme lateral interbody fusion-XLIF. Curr Orthop Pract 3:238–251

    Google Scholar 

  234. Deukmedjian AR, Ahmadian A, Bach K, Zouzias A, Uribe JS (2013) Minimally invasive lateral approach for adult degenerative scoliosis: lessons learned. Neurosurg Focus 35:E4

    PubMed  Google Scholar 

  235. Eck JC, Hodges S, Humphreys SC (2007) Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg 6:321–329

    Google Scholar 

  236. Falavigna A, Piccoli CL (2013) Minimally invasive approaches for thoracic decompression from discectomy to corpectomy. J Neurosurg Sci 3:175–192

    Google Scholar 

  237. Lall RR, Smith ZA, Wong AP, Miller D, Fessler RG (2012) Minimally invasive thoracic corpectomy: surgical strategies for malignancy, trauma, and complex spinal pathologies. Minim Invasive Surg 213791

  238. Mummaneni PV, Tu TH, Ziewacz JE, Akinbo OC, Deviren V, Mundis GM (2013) The role of minimally invasive techniques in the treatment of adult spinal deformity. Neurosurg Clin N Am 2:231–248

    Google Scholar 

  239. Mundis GM, Akbarnia BA, Phillips FM (2010) Adult deformity correction through minimally invasive lateral approach techniques. Spine 26(Suppl):S312–S321

    Google Scholar 

  240. Nasca RJ (2013) Newer lumbar interbody fusion techniques. J Surg Orthop Adv 2:113–117

    Google Scholar 

  241. Oppenheimer JH, DeCastro I, McDonnell DE (2009) Minimally invasive spine technology and minimally invasive spine surgery: a historical review. Neurosurg Focus 3:E9

    Google Scholar 

  242. Patel AA, Brodke DS, Pimenta L, Bono CM, Hilibrand AS, Harrop JS, Riew KD, Youssef JA, Vaccaro AR (2008) Revision strategies in lumbar total disc arthroplasty. Spine 11:1276–1283

    Google Scholar 

  243. Patel VC, Park DK, Herkowitz HN (2012) Lateral transpsoas fusion: indications and outcomes. Sci World J 893608

  244. Paulino C, Patel A, Carrer A (2010) Anatomical considerations for the extreme lateral (XLIF) approach. Curr Orthop Pract 4:368–374

    Google Scholar 

  245. Shen FH, Samartzis D, Khanna AJ, Anderson DG (2007) Minimally invasive techniques for lumbar interbody fusions. Orthop Clin North Am 3:373–386

    Google Scholar 

  246. Spoor AB, Oner FC (2013) Minimally invasive spine surgery in chronic low back pain patients. J Neurosurg Sci 3:203–218

    Google Scholar 

  247. Uribe JS, Vale FL, Dakwar E (2010) Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine 26(Suppl):S368–S374

    Google Scholar 

  248. Wagner WH, Regan JJ, Leary SP, Lanman TH, Johnson JP, Rao RK, Cossman DV (2006) Access strategies for revision or explantation of the Charite lumbar artificial disc replacement. J Vasc Surg 6:1266–1272

    Google Scholar 

  249. Karikari IO, Grossi PM, Nimjee SM, Hardin C, Hodges TR, Hughes BD, Brown CR, Isaacs RE (2011) Minimally invasive lumbar interbody fusion in patients older than 70 years of age: analysis of peri- and postoperative complications. Neurosurgery 4:897–902

    Google Scholar 

  250. Moro T, Kikuchi S, Konno S, Yaginuma H (2003) An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine 5:423–428

    Google Scholar 

  251. Peterson MD, Youssef JA (2013) Extreme lateral interbody fusion (XLIF®): lumbar surgical technique. In: Goodrich JA, Volcan IJ (eds) Extreme lateral interbody fusion (XLIF). Quality Medical Publishing (QMP), St. Louis

  252. Glassman SD, Polly DW, Dimar JR, Carreon LY (2012) The cost effectiveness of single-level instrumented posterolateral lumbar fusion at 5 years after surgery. Spine 9:769–774

    Google Scholar 

  253. Tosteson AN, Tosteson TD, Lurie JD, Abdu W, Herkowitz H, Andersson G, Albert T, Bridwell K, Zhao W, Grove MR, Weinstein MC, Weinstein JN (2011) Comparative effectiveness evidence from the spine patient outcomes research trial: surgical versus nonoperative care for spinal stenosis, degenerative spondylolisthesis, and intervertebral disc herniation. Spine 24:2061–2068

    Google Scholar 

  254. Parker SL, Adogwa O, Bydon A, Cheng J, McGirt MJ (2012) Cost-effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis associated low-back and leg pain over two years. World Neurosurg 1–2:178–184

    Google Scholar 

  255. Rampersaud YR, Gray R, Lewis SJ, Massicotte EM, Fehlings MG (2013) Cost-utility analysis of posterior minimally invasive fusion compared with conventional open fusion for lumbar spondylolisthesis. SAS J 5:29–35

    Google Scholar 

Download references

Acknowledgments

The authors thank Kyle Malone, MS at NuVasive, Inc. for his statistical and editorial support.

Conflict of interest

None of the authors has any potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff A. Lehmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmen, J.A., Gerber, E.J. MIS lateral spine surgery: a systematic literature review of complications, outcomes, and economics. Eur Spine J 24 (Suppl 3), 287–313 (2015). https://doi.org/10.1007/s00586-015-3886-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-3886-1

Keywords

Navigation