Skip to main content
Log in

Reproducibility and repeatability of a new computerized software for sagittal spinopelvic and scoliosis curvature radiologic measurements: Keops®

  • Ideas and Technical Innovations
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate the inter- and intra-observer variability of the computerized radiologic measurements using Keops® and to determine the bias between the software and the standard paper measurement.

Methods

Four individuals measured all frontal and sagittal variables on the 30 X-rays randomly selected on two occasions (test and retest conditions). The Bland–Altman plot was used to determine the degree of agreement between the measurement on paper X-ray and the measurement using Keops® for all reviewers and for the two measures; the intraclass correlation coefficient (ICC) was calculated for each pair of analyses to assess interobserver reproducibility among the four reviewers for the same patient using either paper X-ray or Keops® measurement and finally, concordance correlation coefficient (rc) was calculated to assess intraobserver repeatability among the same reviewer for one patient between the two measure using the same method (paper or Keops®).

Results

The mean difference calculated between the two methods was minimal at −0, 4° ± 3.41° [−7.1; 6.4] for frontal measurement and 0.1° ± 3.52° [−6.7; 6.8] for sagittal measurement. Keops® has a better interobserver reproducibility than paper measurement for determination of the sagittal pelvic parameter (ICC = 0.9960 vs. 0.9931; p = 0.0001). It has a better intraobserver repeatability than paper for determination of Cobbs angle (rc = 0.9872 vs. 0.9808; p < 0.0001) and for pelvic parameter (rc = 0.9981 vs. 0.9953; p < 0.0001).

Conclusions

We conclude that Keops® has no bias compared to the traditionally paper measurement, and moreover, the repeatability and the reproducibility of measurements with this method is much better than with similar standard radiologic measures done manually in both frontal and sagittal plane and that the use of this software can be recommended for clinical application.

Level of evidence

Diagnostic, level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Been E, Kalichman L (2013) Lumbar lordosis. Spine J [Internet]; Available from: http://linkinghub.elsevier.com/retrieve/pii/S1529943013013855

  2. Cobb JR (1960) The problem of the primary curve. J Bone Joint Surg Am 42-A:1413–1425

    CAS  PubMed  Google Scholar 

  3. Le Huec JC, Saddiki R, Franke J, Rigal J, Aunoble S (2011) Equilibrium of the human body and the gravity line: the basics. Eur Spine J 20(S5):558–563

    Article  PubMed Central  PubMed  Google Scholar 

  4. Vaz G, Roussouly P, Berthonnaud E, Dimnet J (2002) Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J 11(1):80–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Le Huec JC, Roussouly P (2011) Sagittal spino-pelvic balance is a crucial analysis for normal and degenerative spine. Eur Spine J 20(S5):556–557

    Article  PubMed Central  PubMed  Google Scholar 

  6. Legaye J, Duval-Beaupere G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7(2):99–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hwang J-H, Modi HN, Suh S-W, Hong J-Y, Park Y-H, Park J-H et al (2010) Reliability of lumbar lordosis measurement in patients with spondylolisthesis: a case–control study comparing the Cobb, centroid, and posterior tangent methods. Spine 35(18):1691–1700

    Article  PubMed  Google Scholar 

  8. Vrtovec T, Janssen MMA, Likar B, Castelein RM, Viergever MA, Pernuš F (2013) Evaluation of pelvic morphology in the sagittal plane. Spine J 13(11):1500–1509

    Article  PubMed  Google Scholar 

  9. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160

    Article  CAS  PubMed  Google Scholar 

  10. Pruijs JEH, Hageman MAPE, Keessen W, van der Meer R, van Wieringen JC (1994) Variation in Cobb angle measurements in scoliosis. Skeletal Radiol 23(7):517–520

    Article  CAS  PubMed  Google Scholar 

  11. Polly DW Jr, Kilkelly FX, McHale KA, Asplund LM, Chang AS (1996) Measurement of lumbar lordosis. Evaluation of intraobserver, interobserver, and technique variability. Spine 21(13):1530–1535 (discussion 1535–1536)

    Article  PubMed  Google Scholar 

  12. Morrissy RT, Goldsmith GS, Hall EC, Kehl D, Cowie GH (1990) Measurement of the Cobb angle on radiographs of patients who have scoliosis. Evaluation of intrinsic error. J Bone Joint Surg Am 72(3):320–327

    CAS  PubMed  Google Scholar 

  13. Vrtovec T, Janssen MMA, Likar B, Castelein RM, Viergever MA, Pernuš F (2012) A review of methods for evaluating the quantitative parameters of sagittal pelvic alignment. Spine J 12(5):433–446

    Article  PubMed  Google Scholar 

  14. Duval-Beaupère G, Schmidt C, Cosson P (1992) A barycentre metric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20(4):451–462

    Article  PubMed  Google Scholar 

  15. Lazennec JY, Ramaré S, Arafati N, Laudet CG, Gorin M, Roger B et al (2000) Sagittal alignment in lumbosacral fusion: relations between radiological parameters and pain. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 9(1):47–55

    Article  CAS  Google Scholar 

  16. Peleg S, Dar G, Medlej B, Steinberg N, Masharawi Y, Latimer B et al (2007) Orientation of the human sacrum: anthropological perspectives and methodological approaches. Am J Phys Anthropol 133(3):967–977

    Article  PubMed  Google Scholar 

  17. Peleg S, Dar G, Steinberg N, Peled N, Hershkovitz I, Masharawi Y (2007) Sacral orientation revisited. Spine 32(15):E397–E404

    Article  PubMed  Google Scholar 

  18. Jackson RP, Phipps T, Hales C, Surber J (2003) Pelvic lordosis and alignment in spondylolisthesis. Spine 28(2):151–160

    Article  PubMed  Google Scholar 

  19. Curylo LJ, Edwards C, DeWald RW (2002) Radiographic markers in spondyloptosis: implications for spondylolisthesis progression. Spine 27(18):2021–2025

    Article  PubMed  Google Scholar 

  20. Jackson RP, Kanemura T, Kawakami N, Hales C (2000) Lumbopelvic lordosis and pelvic balance on repeated standing lateral radiographs of adult volunteers and untreated patients with constant low back pain. Spine 25(5):575–586

    Article  CAS  PubMed  Google Scholar 

  21. Jackson RP, Hales C (2000) Congruent spinopelvic alignment on standing lateral radiographs of adult volunteers. Spine 25(21):2808–2815

    Article  CAS  PubMed  Google Scholar 

  22. Aubin C-E, Bellefleur C, Joncas J, de Lanauze D, Kadoury S, Blanke K et al (2011) Reliability and accuracy analysis of a new semiautomatic radiographic measurement software in adult scoliosis. Spine 36(12):E780–E790

    Article  PubMed  Google Scholar 

  23. Berthonnaud E, Labelle H, Roussouly P, Grimard G, Vaz G, Dimnet J (2005) A variability study of computerized sagittal spinopelvic radiologic measurements of trunk balance. J Spinal Disord Tech 18(1):66–71

    Article  CAS  PubMed  Google Scholar 

  24. Bolesta MJ, Winslow L, Gill K (2010) A comparison of film and computer workstation measurements of degenerative spondylolisthesis: intraobserver and interobserver reliability. Spine 35(13):1300–1303

    Article  PubMed  Google Scholar 

  25. Dimar JR, Carreon LY, Labelle H, Djurasovic M, Weidenbaum M, Brown C et al (2008) Intra- and inter-observer reliability of determining radiographic sagittal parameters of the spine and pelvis using a manual and a computer-assisted methods. Eur Spine J 17(10):1373–1379

    Article  PubMed Central  PubMed  Google Scholar 

  26. Guglielmi G, Stoppino LP, Placentino MG, D’Errico F, Palmieri F (2009) Reproducibility of a semi-automatic method for 6-point vertebral morphometry in a multi-centre trial. Eur J Radiol 69(1):173–178

    Article  PubMed  Google Scholar 

  27. Kim CH, Chung CK, Hong HS, Kim EH, Kim MJ, Park BJ (2012) Validation of a simple computerized tool for measuring spinal and pelvic parameters. J Neurosurg Spine 16(2):154–162

    Article  PubMed  Google Scholar 

  28. Pearson AM, Spratt KF, Genuario J, McGough W, Kosman K, Lurie J et al (2011) Precision of lumbar intervertebral measurements: does a computer-assisted technique improve reliability? Spine 36(7):572–580

    Article  PubMed  Google Scholar 

  29. Sardjono TA, Wilkinson MH, Veldhuizen AG, van Ooijen PM, Purnama KE, Verkerke GJ (2013) Automatic Cobb angle determination from X-ray images. Spine Jun 1

  30. Tanure MC, Pinheiro AP, Oliveira AS (2010) Reliability assessment of Cobb angle measurements using manual and digital methods. Spine J 10(9):769–774

    Article  PubMed  Google Scholar 

  31. Wang Z, Parent S, de Guise JA, Labelle H (2010) A variability study of computerized sagittal sacral radiologic measures. Spine 35(1):71–75

    Article  PubMed  Google Scholar 

  32. Zhang J, Lou E, Shi X, Wang Y, Hill DL, Raso JV et al (2010) A computer-aided Cobb angle measurement method and its reliability. J Spinal Disord Tech 23(6):383–387

    Article  PubMed  Google Scholar 

  33. Vialle R, Ilharreborde B, Dauzac C, Guigui P (2006) Intra and inter-observer reliability of determining degree of pelvic incidence in high-grade spondylolisthesis using a computer assisted method. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 15(10):1449–1453

    Article  Google Scholar 

  34. Dimar JR 2nd, Carreon LY, Labelle H, Djurasovic M, Weidenbaum M, Brown C et al (2008) Intra- and inter-observer reliability of determining radiographic sagittal parameters of the spine and pelvis using a manual and a computer-assisted methods. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 17(10):1373–1379

    Article  Google Scholar 

  35. Boulay C, Tardieu C, Hecquet J, Benaim C, Mitulescu A, Marty C et al (2005) Anatomical reliability of two fundamental radiological and clinical pelvic parameters: incidence and thickness. Eur J Orthop Surg Traumatol 15(3):197–204

    Article  Google Scholar 

  36. Chaise FO, Candotti CT, Torre ML, Furlanetto TS, Pelinson PPT, Loss JF (2011) Validation, repeatability and reproducibility of a noninvasive instrument for measuring thoracic and lumbar curvature of the spine in the sagittal plane. Rev Bras Fisioter São Carlos São Paulo Braz 15(6):511–517

    Article  Google Scholar 

  37. Czaprowski D, Pawłowska P, Gębicka A, Sitarski D, Kotwicki T (2012) Intra- and interobserver repeatability of the assessment of anteroposterior curvatures of the spine using Saunders digital inclinometer. Ortop Traumatol Rehabil 14(2):145–153

    Article  PubMed  Google Scholar 

  38. Yeager MS, Cook DJ, Cheng BC (2013) Reliability of computer-assisted lumbar intervertebral measurements using a novel vertebral motion analysis system. Spine J Off J North Am Spine Soc. Nov 12

  39. Somoskeöy S, Tunyogi-Csapó M, Bogyó C, Illés T (2012) Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. Spine J Off J North Am Spine Soc 12(11):1052–1059

    Article  Google Scholar 

  40. Mieritz RM, Bronfort G, Kawchuk G, Breen A, Hartvigsen J (2012) Reliability and measurement error of 3-dimensional regional lumbar motion measures: a systematic review. J Manipulative Physiol Ther 35(8):645–656

    Article  PubMed  Google Scholar 

  41. Hioki A, Miyamoto K, Shimizu K, Inoue N (2011) Test–retest repeatability of lumbar sagittal alignment and disc height measurements with or without axial loading: a computed tomography study. J Spinal Disord Tech 24(2):93–98

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Le Huec.

Additional information

J.-C. Le Huec is the past president of Eurospine, ISASS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maillot, C., Ferrero, E., Fort, D. et al. Reproducibility and repeatability of a new computerized software for sagittal spinopelvic and scoliosis curvature radiologic measurements: Keops® . Eur Spine J 24, 1574–1581 (2015). https://doi.org/10.1007/s00586-015-3817-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-3817-1

Keywords

Navigation